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Abstract
Face “Hallucination” aims to recover high quality, high-resolution images of human faces
from low-resolution, blurred, and degraded images or video. This thesis presents person-
specific solutions to this problem through careful exploitation of space (image) and space-
time (video) models. The results demonstrate accurate restoration of facial details, with
resolution enhancements upto a scaling factor of 16.

The algorithms proposed in this thesis follow the analysis-by-synthesis paradigm; they
explain the observed (low-resolution) data by fitting a (high-resolution) model. In this
context, the first contribution is the discovery of a scaling-induced bias that plagues most
model-to-image (or image-to-image) fitting algorithms. It was found that models and obser-
vations should be treated asymmetrically, both to formulate an unbiased objective function
and to derive an accurate optimization algorithm. This asymmetry is most relevant to Face
Hallucination: when applied to the popular Active Appearance Model, it leads to a novel
face tracking and reconstruction algorithm that is significantly more accurate than state-
of-the-art methods. The analysis also reveals the inherent trade-off between computational
efficiency and estimation accuracy in low-resolution regimes.

The second contribution is a statistical generative model of face videos. By treating a
video as a composition of space-time patches, this model efficiently encodes the temporal
dynamics of complex visual phenomena such as eye-blinks and the occlusion or appearance
of teeth. The same representation is also used to define a data-driven prior on a three-
dimensional Markov Random Field in space and time. Experimental results demonstrate
that temporal representation and reasoning about facial expressions improves robustness
by regularizing the Face Hallucination problem.

The final contribution is an approximate compensation scheme against illumination
effects. It is observed that distinct illumination subspaces of a face (each coming from
a different pose and expression) still exhibit similar variation with respect to illumination.
This motivates augmenting the video model with a low-dimensional illumination subspace,
whose parameters are estimated jointly with high-resolution face details. Successful Face
Hallucinations beyond the lighting conditions of the training videos are reported.
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Chapter 1

Introduction

As humans, we are competent in perceiving our environment. In a rainstorm, we manage to
drive safely on cues as rough as the blur of oncoming headlights. As parents, we notice the
subtlest shift of expression on our toddler’s face. The signals around us may be extremely
weak; yet an innate perceptual inference mechanism compensates for this: we attune to a
situation, resolve any ambiguities and accurately extract the relevant bits of information.

Inspired by human visual acuity, this thesis aims to recover and interpret subtle sig-
nals in degraded images and videos. In particular, it proposes mathematical models and
statistical inference algorithms to analyze extremely low-resolution videos of human faces.

1.1 The Human Face and its Perception

We critically rely on seeing each other’s faces for communication purposes. We discrim-
inate friend from foe by their facial appearance. We express our emotions and intentions
through facial mimicry. In return, we instinctively search for clues on the faces of others.
Our ability to accurately interpret the faces around us is an important social skill [Young,
1998; Bruce and Young, 2000].

While the human visual system is impressive in adapting to lighting conditions and
resolving fine visual details [Hubel, 1988], it has biologically-imposed limits: our face
perception deteriorates with increasing darkness and distance.

1
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surveillance video observed interpolated

parking_lot

Figure 1.1: In this snapshot of a surveillance video, we may be interested in enhancing
the subject’s face (cropped, middle) for identification or expression analysis. Conventional
methods such as bicubic interpolation yield overly smooth images (right).

1.1.1 The Resolution Problem

When we observe a scene through a camera, our perceptual capability largely depends
on the characteristics of the sensing and display devices. For instance, the finite spatial
resolution of images can impose limits to human interpretation. Fig. 1.1 shows a snapshot
of a surveillance video, with a subject’s face cropped and magnified for closer inspection.
With as little image information, identification and expression analysis is a challenge to
both humans and computers.

1.1.2 Image Degradation 6= Face Degradation

For a closer look at the resolution problem, consider the face images in Fig. 1.2, downsam-
pled progressively from left to right. The highest-resolution image (left) has substantial
detail, revealing the smiling face and even the gaze direction of the subject. Moving to the
right, the same image is shown under increasing blur and quantization. Facial features such
as the eyes, nose, and mouth become more difficult to discern: their intensities blend with
each other and with the surrounding skin.

What type of facial information is preserved through resolution degradation? It is in-
structive to inspect the lowest-resolution image (Fig. 1.2, rightmost) and to try to infer the
properties of the face. To start with, human observers can reliably detect faces at this reso-
lution [Bhatia et al., 1995; Torralba and Sinha, 2001]. The head pose is not ambiguous, the
mouth looks closed and the subject seems to have his eyes open. As we move to the left
and inspect higher-resolution versions of the same face, we gradually recover more details.
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1/8 1/10 1/12high-resolution 1/14 1/16

iain_lowres, 99%

Figure 1.2: From left to right, a high-resolution face image is progressively downsampled.
Under increasing blur and quantization, facial features such as eyes, noses, and mouths
become more difficult to discern: their intensities blend with each other and with the sur-
rounding skin. What type of facial information is preserved through this degradation?

The above example suggests that image degradation and perceived face degradation are
related yet different phenomena: the former is a deterministic pixel-level intensity degra-
dation, while the latter results from a (subjective) cognitive process. Although individual
pixels may be blurred and minute details destroyed, as a whole, a low-resolution face im-
age still conveys useful information to humans. Our resilience to poor resolution was first
observed by [Harmon and Julesz, 1973] and has since been studied extensively [Bachmann,
1991; Samal, 1991; Costen et al., 1994; Sinha et al., 2005].

1.1.3 Temporal Signatures

Difficult viewing conditions reveal an interesting aspect of our visual acuity: in surveil-
lance videos, people at a distance may appear very small, fitting perhaps in a 10-by-2 pixel
window. When we look at static images of this quality, we rarely interpret such “vertical
sticks” as people. Yet if we watch the same-size video of a walking person, we are im-
mediately able to detect the human, and sometimes even identify the subject based on her
silhouette and gait. This capability suggests that spatial and temporal aspects of our visual
stream play a joint role in our interpretation of noisy, ambiguous images. Examples of
vision algorithms that exploit whole-body motion cues include [Polana, 1994; Cutler and
Davis, 2000; Efros et al., 2003] and those reported in [Shah and Jain, 1997].

Though not as periodic as walking silhouettes, faces too exhibit temporal patterns. Fa-
cial expressions are not instantaneous random events; they are produced through contin-
uous muscle activation over time [Ekman and Friesen, 1978]. Under non-optimal condi-
tions (e.g., viewing blurred or negative images), motion has been shown to help human
face perception [Bruce and Valentine, 1988; Pike et al., 1997; Lander et al., 2001]. The
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susan_example_solution

time

observed
input

6x6

ground 
truth

 96x96

hallucination

 96x96

observed
input

6x6

ground 
truth

 96x96

time

susan_example_problem
Figure 1.3: Imagine we are given an extremely low resolution video (top). Assuming that
there is a human face in these images, can we guess the missing details, and estimate (or
“hallucinate”) a highly zoomed video that resembles the original (bottom)?

“supplemental information hypothesis” [O’Toole et al., 2002] suggests that humans learn
motions of familiar faces as dynamic signatures and exploit them for recognition [Roark
et al., 2006]. A number of automated facial analysis systems also model emotions and ex-
pressions as temporal patterns [Pantic and Rothkrantz, 2000; Tian et al., 2005]. However,
their performance drops considerably under low-resolution conditions [Tian, 2004].

1.1.4 A Challenge for Computer Vision

As humans, we are competent in perceiving and interpreting faces in low-resolution images.
Could computers do the same, maybe even better? Could we ask them to draw a picture of
“what they saw in low-resolution” for us?

1.2 The Face Hallucination Approach

“Face Hallucination” [Baker and Kanade, 2002] aims to recover high-quality, high-resolution
images of human faces from low-resolution, blurred and degraded images or video. Fig. 1.3
illustrates the problem: we are given a low-resolution image sequence (top), where an en-
tire face occupies a 6-by-6 pixel patch only. Can we estimate (or “hallucinate”) a zoomed,
high-resolution video that resembles the original (bottom)?

Image resolution enhancement is an inverse problem [Bertero and Boccacci, 1998]. Un-
der blur and downsampling operations, distinct high-resolution images (Fig. 1.4, middle)
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space of 

low-resolution 

images

space of 

high-resolution 

images

prior

model
downsamplingsynthesis

fh_strategy

Figure 1.4: Downsampling is a many-to-one mapping from the space of high-resolution
images (middle) to that of low-resolution ones (right). This operation cannot be inverted
without additional information. Face Hallucination addresses this issue with face priors
and models (left) that constrain the set of possible high-resolution images.

produce the same low-resolution image (Fig. 1.4, right). This is a many-to-one mapping
that cannot be inverted without additional constraints. Mathematically speaking, the prob-
lem is ill-posed and does not have a unique solution.

Face Hallucination turns the resolution enhancement problem into a well-posed one by
limiting the space of allowed high-resolution images: it assumes that a human face is being
observed and imposes a face prior (Fig. 1.4, left). Informally speaking, it first estimates the
face content of the low-resolution observations and then uses this information to reconstruct
the high-resolution image content. The estimation procedure “skims” low-resolution data
for the last bits of facial information that it contains.

1.3 Thesis Statement

This thesis argues for a careful exploitation of space (image) and space-time (video) models
when using the Face Hallucination approach to the resolution enhancement problem. In
particular, it demonstrates that

1. Face Hallucination requires carefully crafted metrics and algorithms. Both the
formulation and the numerical optimization of the fitting metric are susceptible to a
bias that to date has been ignored.

2. Face Hallucination can exploit facial dynamics. Temporal representation and rea-
soning about facial expressions improve the robustness of recovered video details.
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Figure 1.5: Face Hallucination follows the analysis-by-synthesis paradigm: it fits a high-
resolution generative face model to low-resolution data. Model-fitting typically involves a
search (or optimization) in the state space of the model. Once the best model parameter (or
configuration) is found, the model synthesizes high-frequency image details.

1.4 Thesis Overview

While Face Hallucination is a model-based inference problem, it does not prescribe any
particular face model or inference algorithm. The representation of the face can be holistic
or parts-based, parametric or data-driven, geometric or image-based. If the face is moving,
the model can be augmented with geometric transformation parameters to track and to
hallucinate at the same time. Depending on the application, generic or subject-specific face
priors might be more suitable.

The arguments of this thesis span two face models: 1) an Active Appearance Model
[Cootes et al., 1998, 2001] that generates face images of varying shape and appearance,
and 2) a data-driven graphical model [Dedeoǧlu et al., 2004] that generates face videos

of various expressions. Although these models are quite different, Face Hallucination ex-
ploits them in the same fashion: following the analysis-by-synthesis paradigm, it fits a
(high-resolution) model onto (low-resolution) data. As illustrated in Fig. 1.5, this involves
searching for the model parameter (or configuration) that best explains the observations.
Once the best model setting is found, the model synthesizes high-frequency image details.
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1.4.1 Exploiting an Image Model

Chapter 3 approaches the Face Hallucination problem with an image model, and demon-
strates that hallucination critically depends on accurate estimates of the underlying facial
features. The computational workhorse is the Active Appearance Model [Cootes et al.,
1998, 2001], a compact representation of the shape and appearance of objects. This model
has been most popular in face modeling, since it can generate faces with varying expression
and pose by composing an appearance image and deforming it into different shapes.

The key contribution of Chapter 3 is the discovery of a resolution-induced bias that
plagues most model-to-image (or image-to-image) fitting algorithms. This bias affects Ac-
tive Appearance Models as well. Section 3.2 shows that models and observations should
be treated asymmetrically, both to formulate an unbiased objective function and to derive
an accurate optimization algorithm. Upon this observation, Section 3.3 derives a novel
“resolution-aware fitting” algorithm that respects the asymmetry.

The proposed model-fitting (and hallucination) method is experimentally compared
against a state-of-the-art fitting algorithm across a variety of resolution and model com-
plexity levels. The results in Section 3.4 show significant improvements in the estimation
accuracy of both shape and appearance parameters, yielding more accurate hallucinations.
As shown in Fig. 1.6, the novel fitting algorithm is significantly more accurate in estimat-
ing and reconstructing faces. This demonstrates the importance of carefully crafted metrics
and optimization algorithms in meeting the accuracy challenges in low-resolution.

1.4.2 Exploiting a Video Model

Chapter 4 approaches the Face Hallucination problem with an video model, and demon-
strates that hallucination can benefit from facial dynamics. To investigate the role of time, a
statistical generative model of face videos is proposed. This model treats videos as compo-
sitions of space-time patches and encodes visual phenomena in an example-based fashion.
The patch-based representation is also used to define a prior in space and time.

To quantify the effect of spatial and temporal models on the hallucination performance,
extensive experiments are performed. As illustrated in Fig. 1.7, the proposed algorithm
produces high-resolution expressions (bottom) that closely resemble the ground truth (mid-
dle). The quantitative results of Section 4.4 demonstrate that temporal representation and
reasoning about facial expressions improves robustness by regularizing the Face Halluci-
nation problem.
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Figure 1.6: The proposed AAM fitting formulation yields significantly more accurate re-
constructions of facial details (middle). State-of-the-art algorithms (bottom) that rely on
the traditional formulation are shown to exhibit a systematic bias.
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Figure 1.7: Exploiting the spatio-temporal dynamics of faces, the video hallucination al-
gorithm (bottom) reconstructs facial expressions that closely resemble the ground truth
(middle). Quantitative experiments reveal the smoothing role of temporal dynamics in
overcoming 16-fold resolution degradations.
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Appearance-based models can be brittle against varying illumination. In Chapter 5,
this problem is explicitly addressed by augmenting the video model of Chapter 4 with a
low-dimensional illumination subspace. Illumination is treated as a nuisance parameter:
its effects are first estimated and then removed from observed videos. This permits face
hallucinations beyond the lighting conditions of the training videos.

1.5 Contributions

The contributions of this thesis can be summarized as follows:

• It demonstrates that Face Hallucination critically depends on model-fitting metrics: a
resolution-induced bias is shown to affect most model-to-image and image-to-image
fitting algorithms operating on low-resolution images. The analysis reveals that mod-
els and observations should be treated asymmetrically both to formulate an unbiased
objective function and to derive an accurate optimization algorithm. The asymme-
try leads to a trade-off between computational efficiency and estimation accuracy in
low-resolution regimes.

• It proposes a model-fitting algorithm that respects the above-mentioned asymmetry:
it adopts the popular Active Appearance Model and derives a novel Face Hallucina-
tion and tracking algorithm that proves significantly more accurate than state-of-the-
art methods in low-resolution.

• It demonstrates how Face Hallucination can benefit from facial dynamics: a statisti-
cal generative model of face videos is proposed to represent and reason about facial
expressions. This model treats videos as compositions of space-time patches, effi-
ciently capturing complex visual phenomena such as eye-blinks and the occlusion or
appearance of teeth.

• It exploits the space-time representation to define a data-driven face prior on a 3-
dimensional Markov Random Field. It poses Face Hallucination as a probabilistic
inference problem and demonstrates the crucial role of a video’s temporal dimension
in hallucinating the correct facial behaviors.
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• It proposes an approximate compensation scheme against illumination variation. It
augments the generative video model with a low-dimensional illumination subspace,
whose parameters are estimated jointly with high-resolution face details. This makes
Face Hallucinations beyond the lighting conditions of the training videos possible.

• It achieves person-specific resolution enhancements up to a scaling factor of 16.



Chapter 2

Prior Work on
Image Resolution Enhancement

This chapter overviews prior approaches to the general problem of image resolution en-
hancement. The working principles and assumptions of existing algorithms reveal why
enhancing face images can present both a challenge and an opportunity.

2.1 Resolution Enhancement: An Inverse Problem

Cameras cannot capture infinitely detailed images. The optical blur by their lenses and the
finite density of their sensing elements limit the resolution of the images they capture. Im-
age quality is further affected by sensor noise and quantization artifacts. In some cases the
problem can be alleviated by placing the camera closer to the object of interest or by using a
telezoom lens. However, there are a number of scenarios where these approaches would be
impractical or prohibitively expensive. These limitations have motivated signal processing
and pattern recognition approaches to enhance image resolution, yielding a number of al-
gorithms over the past two decades [Borman and Stevenson, 1998; Chaudhuri, 2001; Park
et al., 2003].

In the resolution enhancement or super-resolution (SR) problem, we are given one or
more low-resolution images and are asked to produce a higher-resolution one. Let us denote
the high-resolution image by H (M2N2 × 1 vector), and the low-resolution image by L

(N2×1 vector), corresponding to a downscaling factor of M per dimension, where M > 1.

11
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From the point of view of image formation, the relationship between H and L is relatively
well understood [Andrews and Hunt, 1977]. A local linear averaging and downsampling
operator, denoted by A (N2 ×M2N2 matrix), maps high-resolution images onto the space
of low-resolution ones. A pixel-wise independent Gaussian noise may be added to account
for the imaging sensor noise:

L = AH + ηL. (2.1)

Observe that the problem of recovering the high-resolution image H amounts to invert-
ing the operator A. However, because A is a many-to-one mapping, its inversion is math-
ematically ill-posed [Vogel, 2002], necessitating some form of prior knowledge about the
images to constrain the solution for H [Bertero and Boccacci, 1998; Chalmond, 2003]. For
example, the smoothness assumption would penalize strong edges, effectively constraining
the solution space to that of smooth images (Fig. 1.1, right).

The observation model in (2.1) can generalize to video sequences by simply redefining
the variables H and L to be stacked vectors of video frames and by turning A into a block
diagonal matrix (ignoring motion-induced blur). As the ill-posed nature of the problem
persists, a prior for high-resolution videos would still be needed: a commonly used prior
assumption for videos is that of spatio-temporal smoothness [Kokaram, 1998].

A review of the existing literature on this problem identifies two approaches. First,
reconstruction-based methods aim to increase the effective sampling density. This requires
a set of aliased, low-resolution samples of the underlying scene to be fused into a coherent
high-resolution estimate. The estimate, in turn, should be able to account for all undersam-
pled low-resolution observations by simulating the image degradation process. The second
and more recent approach is learning-based, where low-resolution observations are used to
predict lost high-resolution details using a training set.

Fig. 2.1 compares the SR methods from an inference point of view. Observe that both
attempt to infer a point in the space of high-resolution images (middle) that explains the ob-
served low-resolution image (right) through downsampling. In addition, they may both im-
pose generic image priors such as local smoothness, edge preservation, and non-negativity.
Learning-based approaches bring in additional, oftentimes domain-specific priors (left) to
further constrain the space of possible solutions.
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Figure 2.1: Both reconstruction- and learning-based approaches try to infer a high-
resolution image that explains the low-resolution observation when downsampled.
Learning-based methods bring in additional, oftentimes domain-specific priors to further
constrain the space of possible solutions.

2.2 Reconstruction-based Approaches

The fundamental problem with low-resolution images and videos is that they are severely
undersampled, i.e., aliased. Since the early 80s, much research has been dedicated into
alleviating this aspect by means of increasing the effective sampling density. The starting
point is a set of sub-pixel shifted low-resolution observations of a scene (Fig. 2.2, left).
Provided that we can accurately bring these images into a common coordinate frame, it
becomes possible to estimate a super-resolved (SR) image, defined over a sampling grid
finer than in any of the original observations (Fig. 2.2, right). The theoretical foundation of
these approaches can be found in the Generalized Sampling Theory [Papoulis, 1977].

The intuition above leads to the reconstruction constraint that the high-resolution es-
timate would need to satisfy: after being warped back to the coordinate frame of each
observation, followed by blurring, downsampling and decimation, the estimate should be
able to regenerate all low-resolution images up to the noise level. In the case of a video
sequence, temporally adjacent frames are candidates for providing largely overlapping ob-
servations. Provided that the video is smooth enough to reliably and accurately recover the
relative motion between frames, the reconstruction constraint can be imposed.
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… registration

sampling_density

Figure 2.2: Reconstruction-based approaches aim to increase the spatial density of samples.
Provided that multiple low-resolution images (left, 2×2 pixels) can be aligned correctly into
a common coordinate frame, interpolation over a finer sampling grid can yield a “super-
resolved” image (right, 4× 4 pixels).

2.2.1 Computational Tools

The reconstruction-based line of research dates back to the frequency-domain technique
of [Tsai and Huang, 1984]. Besides restricting the relative motion between low-resolution
images to global translations, their work did not model optical blur or observation noise.
Since then, a variety of models and computational tools have been developed, gradually
expanding allowed motion types and incorporating more realistic observation models. For a
comprehensive review, see [Borman and Stevenson, 1998; Park et al., 2003]. The following
is a summary of the computational tools used in the reconstruction-based paradigm.

Least-squares (LS) methods have been used in both frequency [Kim et al., 1990] and
spatial domains [Elad and Feuer, 1997, 1999]. A recent LS formulation simultaneously
enhanced both spatial and temporal resolution of videos via spatio-temporal regularization
[Shechtman et al., 2002]. The Iterated Back Projection (IBP) algorithm [Irani and Peleg,
1991] was inspired by Computed Tomography techniques. A similar algorithm was based
on non-uniform interpolation and deblurring [Ur and Gross, 1992]. Using Projection-Onto-
Convex-Sets (POCS) methods, various image priors could be imposed efficiently [Stark and
Oskoui, 1989]. Subsequent work took into account optical blur, nonzero aperture time and
sampling on arbitrary lattices [Patti et al., 1997].

Probabilistic inference tools have also been applied to SR problems: spatial-domain
Bayesian formulations offered a rigorous estimation framework with regard to spatial pri-
ors [Schultz and Stevenson, 1996; Cheeseman et al., 1996; Bascle et al., 1996]. Using
probabilistic graphical models such as Markov Random Fields (MRF) [Li, 2001], desired
local image properties such as smoothness and edge-preservation could be conveniently
expressed. An extension of MRFs into the temporal domain naturally captured spatio-
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temporal video priors [Borman and Stevenson, 1999]. Other variations on the Bayesian
approach include Gaussian process priors [Tipping and Bishop, 2003] and dynamic tree
inference algorithms [Storkey, 2003]. Bayesian inference leads to well-defined Maximum
A Posteriori estimates of high-resolution images. In contrast, POCS and IBP methods may
not have unique solutions.

2.2.2 The Need for Accurate Motion Estimation

Accurate image alignment plays a critical role in reconstruction-based methods. Prior work
explicitly addressed issues related to motion ambiguities and partial occlusions [Irani and
Peleg, 1993]. In a similar vein, “validity and segmentation maps” were constructed to elim-
inate inaccurate motion estimates and to enable object-based tracking [Eren et al., 1997].
Observing the importance and difficulty of estimating the motion accurately, registration
and SR problems were cast jointly and solved iteratively [Hardie et al., 1997]. To avoid
early commitment to potentially erroneous initial motion estimates, a set of feasible mo-
tions were maintained in [Shah and Zakhor, 1999]. Recent work has analyzed the influence
of image alignment and warping errors on the quality of super-resolved images [Lin and
Shum, 2001, 2004; Zhao and Sawhney, 2002].

Dense optical flow [Horn and Schunck, 1981] has also been used in SR [Baker and
Kanade, 1999a; Jiang et al., 2003]. Enforcing the consistency of recovered flow fields
has been shown to improve the robustness of SR results [Zhao and Sawhney, 2002]. The
challenge in estimating such high-dimensional motion models is that each flow vector has
to be estimated from a small number of pixels. This is in contrast to more global, para-
metric motion models [Bergen et al., 1992] that are reliable and accurate as long as the
underlying scene motion is approximated well. For instance, the feature-point approach of
[Capel, 2001; Capel and Zisserman, 2003] modeled inter-frame motions as homographies
and estimated their parameters using sampling procedures that were robust against outliers.

Reconstruction-based SR requires the registration of independently acquired images
into a common coordinate frame. When this crucial step is not well-defined or is simply
too difficult due to blur and noise, SR cannot be performed.
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2.2.3 What’s So Hard About Faces?

The high-resolution video frames in Fig. 1.3 demonstrate how changing facial expressions
modify appearance: a surprised look causes the eyebrows to rise and slightly bend. Cheeks,
lips and the lower contour of the chin move and deform as one speaks. Dimples and wrin-
kles appear and disappear as a result of facial muscle activity. Particularly dramatic are
eyeblinks that within a fraction of a second occlude and then reveal the eyes. Similarly,
parts of a speaker’s teeth and tongue become intermittently visible during speech.

Unfortunately, from an image registration point of view, the rich visual phenomena of
faces represent the very cases for which the motion estimation problem is not well-defined:
the pixel intensities over consecutive frames are not displaced versions of each other. An
inspection of the low-resolution version of the same video reveals that the downsampling
process has largely destroyed the complex visual phenomena described above.

One may wonder whether nonparametric motion models such as optical flow would
be able to recover smooth deformations in certain areas of the face, and thus make SR
feasible, at least locally. Unfortunately, since the effects of occluded or newly appeared
visual structures get irreversibly mixed in with their neighboring pixels, a good portion of
face pixels is unavoidably contaminated with such unmodeled variations. Recovering the
correct sub-pixel displacements on such a small scale does not seem practical.

The correctness argument about registering video frames may seem too conservative.
After all, there is a large body of literature and working systems that estimate complex
motion fields for classification and detection purposes [Shah and Jain, 1997; Cédras and
Shah, 1995; Efros et al., 2003]. The crucial factor that distinguishes the reconstruction-
based SR problem is the accuracy requirement on the motion estimation, whereas in other
domains, repeatability takes priority. Unless the low-resolution images are registered ac-
curately, SR estimates will simply be incorrect. In a motion-based classification task, as
long as the same estimation error is consistently reproduced, the performance of classifiers
or detectors would suffer minimally.

2.3 Learning-based Approaches

Learning-based approaches rely on the premise that a low-resolution observation contains
enough information to make reasonable predictions about its high-resolution counterpart or
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features thereof (such as edges). The essence of these techniques is to use a training set of
high-resolution images and their low-resolution versions to learn a joint occurrence model.
This model can take a variety of forms: a set of learnt interpolation kernels, a look-up table
of low-high resolution image patches, or their coefficients in alternative representations.

Learning-based algorithms for SR are relatively recent and have mostly been restricted
to static images. It was hypothesized in [Candocia, 1998; Candocia and Principe, 1999]
that similar image neighborhoods remained similar across scales, and a local learning from
training samples was proposed. A set of interpolation kernels was extracted in an unsu-
pervised fashion, and resolution enhancements by a factor of 2 per dimension were re-
ported. Similar results were achieved through Tree-Based Resolution Synthesis [Atkins,
1998; Atkins et al., 1999], which learned various interpolation filters from training data
and applied them selectively upon local classifications. The wavelet-domain formulation
of [Daniell and Matic, 1999] exploited SR for compression: their multiresolution image
coder used a neural network to predict upper frequency band coefficients from low fre-
quency information. The work by [Freeman and Pasztor, 1999; Freeman et al., 2000, 2002]
represented the scene as a Markov network of image patches and used sample-based prob-
abilistic inference algorithms, yielding an enhancement factor of 4. Primal sketches [Marr,
1982] were used for both recognition and enhancement purposes in [Sun et al., 2003],
yielding a 3-fold increase in resolution.

When images are limited to a particular domain, learning-based approaches can be very
powerful: the seminal work on Face Hallucination [Baker and Kanade, 1999b, 2002] con-
sidered super-resolving human faces only, and furthermore, employed inhomogeneous (i.e.,
location-specific) priors. Their recognition algorithm referred to a database of registered
face images and selected those training patches that best matched a given input, producing
convincing results with zoom factors of up to 8. The two-step procedure of [Liu et al., 2001,
2007] first estimated a global face via Principal Component Analysis (PCA) and then fit a
nonparametric local model. The “eigenface” representation was also exploited in [Capel
and Zisserman, 2001; Gunturk et al., 2003; Wang and Tang, 2005]. The work of [Jia and
Gong, 2005] extended this approach to the multilinear case and took into account viewpoint
and illumination variations. In a similar vein, morphable models [Vetter and Troje, 1997]
that encode the shape and texture of faces jointly were also used for SR enhancement [Park
and Lee, 2003, 2004].

Learning-based SR has been applied to videos as well: the method of [Freeman et al.,
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2000] was applied to image sequences, but severe video artifacts were observed [Bishop
et al., 2003]. To achieve more coherent videos, the heuristic of re-using the high-resolution
solutions of preceding frames was proposed. The temporal redundancy of videos was also
targeted in [Jia and Gong, 2006], who fused multiple, partially occluded face observations
in a video sequence.

Frame-to-frame smoothness and redundancy is not the only characteristic of videos. For
instance, the video of a human face that speaks and displays natural expressions over time
will contain very specific temporal regularities. Our previous work on Face Hallucination in
videos [Dedeoǧlu et al., 2004] exploited these spatio-temporal signatures for recognition1:
the complex occlusion and re-appearance events that haunt alignment algorithms were used
as rich temporal signatures that distinguished facial expressions from each other.

In principle, the performance of learning-based techniques is limited by the amount
of discriminative information that “sneaks” from high-resolution training samples to their
low-resolution counterparts during the downsampling process. The challenge for these
algorithms is to retain as much of this information as possible while generalizing to other
samples drawn from the domain of interest.

2.4 Summary

This chapter surveyed existing methods for resolution enhancement and discussed their
suitability for human faces. First, it described the working principles of reconstruction-
based methods and underlined how critically they depended on accurate registration of
low-resolution images: this turned out to be a serious hurdle for low-resolution faces, where
the eye and mouth pixels can rarely be explained with motion models. Second, it presented
the philosophy of learning-based methods, such as Face Hallucination.

1This was an early version of the model presented in Chapter 4.



Chapter 3

Face Hallucination with an Image Model

Face Hallucination exploits high-resolution face priors to interpret and to enhance low-
resolution images. Its success hinges upon accurately estimating facial features, inde-
pendent of how these may be represented or parametrized in the prior model. When the
estimation accuracy drops, hallucinated details become incorrect and unrealistic. Fig. 3.1
illustrates this point on three hallucination examples: when there is a large error, halluci-
nated faces may not even look human (middle). Moreover, a small advantage in estimation
accuracy can yield a drastic improvement in hallucination (right). This chapter demon-
strates the importance of carefully crafted metrics and optimization algorithms in meeting
the accuracy challenges in low-resolution.

The computational workhorse of this chapter is the Active Appearance Model [Cootes
et al., 1998, 2001]. It is a compact representation of the shape and appearance of objects

unbiasedbiasedlarge error
1/16
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ground truth

Face Hallucination

monsters, 99%

Figure 3.1: Face Hallucination critically depends on accurate estimates of the underly-
ing facial features (left-most). When the estimation accuracy drops, hallucinated details
become incorrect and even unrealistic (middle). We show that a small improvement in
estimation accuracy can dramatically boost the hallucination quality (right-most).
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and has been most popular in face modeling: it can generate faces with varying expression
and pose by modifying its appearance image and warping it into different shapes. Sec-
tion 3.1 defines this model mathematically and describes how it has traditionally been fit to
observed data.

Section 3.2 reveals a resolution-induced bias that plagues most model-to-image (or
image-to-image) fitting algorithms, including Active Appearance Models. This implies
that models and observations should be treated asymmetrically, both to formulate an unbi-
ased objective function and to derive an accurate optimization algorithm. Upon this obser-
vation, Section 3.3 formulates a novel resolution-aware fitting algorithm that respects the
asymmetry and incorporates an explicit model of the blur caused by the camera’s sensing
elements.

Section 3.4 experimentally compares the new fitting and hallucination algorithm against
a state-of-the-art algorithm across a variety of resolution and model complexity levels.
The results show significant improvements in the estimation accuracy of both shape and
appearance parameters, yielding more accurate hallucinations using RAF.

Section 3.5 discusses some practical and algorithmic consequences of the asymmetry
principle and identifies directions for future investigation.

3.1 The Active Appearance Model

Active Appearance Models (AAM) are compact, parametric representations of the shape
and appearance of objects [Cootes et al., 1998, 2001]. Because they can efficiently encode
non-rigid shape deformations and appearance variations, they have been very popular in
face tracking applications.

Recall that Face Hallucination exploits a high-resolution face prior model to interpret
low-resolution data. The AAM must be trained on face images of high-resolution where
landmarks such as eyebrows and lips need to be manually labeled. Once the AAM has
been learned, it can be fit to novel (low-resolution) images for interpretation and (high-
resolution) synthesis.

An AAM consists of two models, the shape and appearance of an object. Each of these
is a linear Principal Components model learned from training data. The shape of an AAM
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is defined by a set of 2D landmark locations

s = (x1, y1, x2, y2, . . . , xv, yv)
T. (3.1)

The shape model, parametrized with p = (p1, p2, . . . , pn), expresses any shape as a linear
combination of basis shapes added onto a base shape:

s(p) = s0 +
n∑

i=1

pisi. (3.2)

An AAM is defined in the coordinate system of the object being modeled. To generate
object instances in arbitrary poses, a global transform is needed. Following [Matthews
and Baker, 2004], we define four special shape bases to account for similarity transforms
(scale, rotation, and two translations) and compose them with the shape model. We denote
the combined geometric deformation by W(x;p), where x is a model point coordinate
being mapped onto an image coordinate.

The appearance model consists of the mean and basis images. The basis images are
shape-normalized, i.e., they are defined within the base shape s0. The appearance model is
linear, parametrized with λ = (λ1, λ2, . . . , λm) as

H(x; λ) = H0(x) +
m∑

i=1

λiHi(x) ∀ x ∈ dom s0, (3.3)

where x is a pixel coordinate in the domain of s0. For a face, appearance basis images of
100x100 pixels are deemed to carry sufficient facial detail.

Given the parameters p and λ, an object instance is generated in two steps: First,
the image H(x; λ) is computed according to appearance coefficients. Next, this image is
geometrically warped using the shape parameters p. We use the notation H

(
W(x;p); λ

)
to express the resulting warped image.

In this thesis, we consider the simpler case of independent AAMs [Matthews and Baker,
2004], where the statistical dependence between the shape and appearance parameters is
ignored. While such dependencies have been exploited in prior work [Cootes et al., 1998,
2001], their advantages remain largely separate of the current discussion.
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3.1.1 Traditional Fitting Formulation

Given a set of AAM parameters, the linear generative equations (3.2) and (3.3) can uniquely
synthesize an object instance [Matthews and Baker, 2004]. Model-based image analysis
deals with the inverse of this process: it aims to recover those AAM parameters which best

explain a given image. For this end, one needs to define a similarity metric to quantify what
constitutes a “good” match, and a fitting algorithm to compute the parameter values which
optimize the similarity metric.

The original AAM work [Edwards et al., 1998; Cootes et al., 1998, 2001] as well as its
computationally efficient reformulation [Matthews and Baker, 2004] define the fitting cri-
terion as the sum of squared intensity differences between the synthesized model template
and the warped input image L:

∑
x∈dom s0

[
L
(
W(x;p)

)
−H(x; λ)

]2
. (3.4)

Since this objective function is highly nonlinear in its parameters, iterative gradient-descent
methods are typically used: in each iteration, updates ∆p and ∆λ are computed and added
to (or composed with) current estimates of p and λ, respectively. Early work in AAMs
[Cootes et al., 1998; Edwards et al., 1998; Cootes et al., 2001] assumed a constant relation-
ship between the error image and the additive updates: this mapping was learned through
regression on perturbation-based training data. Later, the work by [Matthews and Baker,
2004] showed that in general there is no constant linear relationship between the error im-
age and the update in the additive case, but that there is in the (inverse) compositional case.
Based on this insight, along with the independence of the shape and appearance models in
an independent AAM, efficient AAM fitting algorithms were developed, running at over
200 frames per second (standard PC, circa 2003) on typically sized AAM.

3.1.2 The Unsuspected Culprit in Low-Resolution Problems

Any search method for optimizing the criterion (3.4) would suffer from a large number
of local minima. In some cases, the solution might even be ambiguous. To make matters
worse, these difficulties are only exacerbated when the available data is noisy and low-
resolution, as in Face Hallucination.

As illustrated in Fig. 3.2, we have to deal with two image coordinates. The first one,
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Figure 3.2: Graphical representation of the traditional fitting criterion of (3.4). From left to
right, observed images are warped, interpolated, and finally compared against the synthe-
sized model instance. When the input image is low in resolution, significant interpolation
is needed to warp it onto the model coordinate frame.

denoted by u, is the pixel coordinate of the low-resolution image L. The second one, de-
noted by x, is the pixel coordinate in the shape-normalized template image H(λ). Note
that the summation in (3.4) is defined over x, i.e., the fitting criterion prescribes first warp-

ing and interpolating the image L, and then comparing it against the synthesized template.
The latter is normalized to shape s0 at the AAM’s native resolution, and remains fixed in
size. Consequently, when objects appear small in comparison to the AAM, they need to be
enlarged through interpolation.

The traditional formulation’s reliance on interpolation turns out to be its Achilles’ heel

in low-resolution regimes. The next section will show that the fitting criterion itself be-
comes increasingly suboptimal (in accuracy) with higher scaling factors. This is an artifact
of formulation and represents a serious deficiency for Face Hallucination: if the face con-
tent of the low-resolution images is not recovered accurately, reconstructed image details
will be erroneous.
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3.2 The Asymmetry of Model and Image Fitting Problems

This section reveals a fundamental flaw in traditional AAM fitting; the criterion (3.4) yields
a biased estimator when the observations are lower in resolution than the model. Without
loss of generality, we analyze this bias in the framework of image-to-image registration.
The images can be real (captured by a camera) or synthesized by a generative model such
as AAM.

The image registration problem underlies many computer vision applications, such as
motion estimation, tracking, model-based recognition and change detection [Brown, 1992;
Maintz and Viergever, 1998; Zitova and Flusser, 2003]. It is usually tackled by first defining
a geometric deformation scheme and then warping one image onto another such that they
become as similar as possible according to some criterion.

We address the following questions: When registering two images, can we treat them
equally and interchangeably? What are the conditions under which a symmetric treatment
is possible? Do these conditions impose any restrictions upon the applicable algorithms?
Such questions are relevant to both the formulation step and the numerical optimization

step of the registration task.

The Problem Formulation Step

Consider for example the popular “sum of normed differences” objective function [Irani
and Anandan, 2000; Modersitzki, 2004]∑

y∈domI1

[
I1(y)− I2

(
W12(y)

)]p
, (3.5)

where I1 and I2 are images, y is a pixel coordinate in the domain of I1, and W12 is the
geometric mapping from the coordinate frame of I1 to that of I2. For p = 2, this amounts
to modeling the pixel intensities of I1 as i.i.d. Gaussian noise added versions of those of
the warped I2. Therefore, the warp that minimizes (3.5) is the Maximum-Likelihood (ML)
estimate, known to be asymptotically unbiased [Casella and Berger, 1990].

The formulation above is asymmetric: I2 is regarded as template and is warped onto
I1. Indeed, a survey of existing methods reveals that most image registration problems are
formulated in this way, and that there is rarely any discussion as to which image ought to
be the template.
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The asymmetry of (3.5) has been addressed in prior work [Christensen, 1999; Cachier
and Rey, 2000; Rogelj and Kovacic, 2003; Skrinjar and Tagare, 2004], where, in an attempt
to remove it, the objective functions were symmetrized 1, yielding∑

y∈domI1

[
I1(y)− I2

(
W12(y)

)]︸ ︷︷ ︸
from I2 onto I1

p

+
∑

z∈domI2

[
I2(z)− I1

(
W21(z)

)]︸ ︷︷ ︸
from I1 onto I2

p

. (3.6)

A symmetric form for the geometric warp priors have also been proposed [Ashburner et al.,
1999]. In some cases, to further impose symmetry, an additional consistency term on W12

and W21 has been used, such as∑
y∈domI1

[
y −W21(W12(y)

)]p
+

∑
z∈domI2

[
z−W12(W21(z)

)]p
.

These past approaches have essentially regarded the asymmetry as an opportunity to
incorporate more data and regularization priors into the registration problem at hand.

The Numerical Optimization Step

Independent of the definition of an objective function, its numerical optimization (i.e., the
fitting algorithm) has also been treating the two images in an asymmetric fashion. For
example, the original Lucas-Kanade algorithm [Lucas and Kanade, 1981] used a Taylor
expansion of the warp around its current estimate, yielding∑

y∈domI1

[
I1(y)− I2

((
W12 + ∆W12

)
(y)
)]p

,

and iteratively solved for the warp updates ∆W12. Observe that only image I2 is warped
in this scheme. In contrast, the “inverse compositional” algorithm [Baker and Matthews,
2001, 2004] performed the expansion on I1 and minimized∑

y∈domI1

[
I1

(
∆W21(y)

)
− I2

(
W12(y)

)]p
1Re-expressing (3.5) in the domain of I2 would introduce the Jacobian |J(W12)| as a weighting term.

However, the symmetrized form is not necessarily limited to the original noise model. It may instead combine
two noise models.
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Figure 3.3: A planar scene is observed by pinhole cameras (left). Under central projection,
scene-to-image and image-to-image transformations (right) are homographies.

with respect to ∆W21, resulting in higher efficiency. Note how the inverse compositional
formulation warps both images simultaneously, albeit to different degrees.

3.2.1 Analysis in a Simplified Scenario

Consider the simplified scenario shown in Fig. 3.3 (left), in which a planar scene S is
observed by two pinhole cameras which capture continuous images. Under the central
projection model, scene-to-image and image-to-image coordinate transformations will be
homographies [Hartley and Zisserman, 2000]. Note that this class of geometric transfor-
mation will account for observed images exactly. In order to avoid complications arising
from non-corresponding image points, we assume that both images have infinite extent and
are free of occlusion.

As shown in Fig. 3.3 (right), the domains of the scene radiance S, image I1 and image
I2 are related by homographies. WS1 and WS2 denote transformations which take scene
coordinates, and compute their corresponding image point locations in I1 and I2, respec-
tively. W12 denotes the transformation from I1 to I2, and W21 from I2 to I1. To render the
problem well-posed, all transforms are assumed to be invertible, i.e., W12 = W−1

21 . Thus,
the image registration task is to estimate the homography W12 (or W21) between I1’s and
I2’s coordinate frames based on image intensity measurements.

We will use two equivalent notations to express the fact that one image is a geometri-
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cally transformed version of another. The first one is I1(y) = I2

(
W12(y)

)
. Using point

coordinates, this notation indicates where a particular image point maps onto the other im-
age, and states how those image intensities relate to each other. Alternatively, we will use
I1 = warp(I2;W21). This notation refers to an entire domain’s transformation. It states
that I1 is the image obtained by transforming every point in the domain of I2 by W21; note
the use of W21 here instead of W12, since the transformed points are in I2.

3.2.2 Theoretical Case: Ideal Camera and Known Scene

We start our discussion with an idealized case. Suppose that we have full knowledge of
the underlying scene radiance function S, and both cameras are ideal; their lenses precisely
focus incoming light rays parallel to the optical axis onto the camera’s image plane, and
their photo-receptive fields are continuous (i.e., they have infinite resolution). We model
the intensity at an image point as a noisy (independent and identically-distributed, additive
Gaussian) observation of the corresponding scene point’s radiance,

I1(y) = S
(
W1S(y)

)
+ ε(y) ∀y ∈ domI1, (3.7)

I2(z) = S
(
W2S(z)

)
+ ε(z) ∀z ∈ domI2, (3.8)

where y and z are points in the domains of I1 and I2, respectively. We denote image-
to-scene warps (homography) by W1S and W2S (Fig. 3.3, right). Using the alternative
notation, (3.7) and (3.8) can be also expressed as

I1(y) = warp(S;WS1)(y) + ε(y) ∀y ∈ domI1, (3.9)

I2(z) = warp(S;WS2)(z) + ε(z) ∀z ∈ domI2. (3.10)

In the following, we present three different methods to estimate W12. Given our as-
sumptions at this moment, these algorithms are rather trivial. Nevertheless, they will be
minimally affected while the assumptions are relaxed in Section 3.2.3, allowing us to high-
light their applicability to different situations.
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A1. Generative Algorithm

Step 1: Find the ML parameters for scene-to-image warps WS1 and WS2:

ŴS1 = arg min
WS1

∫
y∈domI1

[
I1(y)− warp(S;WS1)(y)

]2
dy. (3.11)

ŴS2 = arg min
WS2

∫
z∈domI2

[
I2(z)− warp(S;WS2)(z)

]2
dz. (3.12)

Step 2: By the invariance property of the ML estimates [Casella and Berger, 1990], the
relative warp computed by composition is the ML estimate for W12:

Ŵ12 = Ŵ1S ◦ ŴS2 = (ŴS1)
−1 ◦ ŴS2.

B1. Forward Algorithm

Step 1: Find ŴS1 and ŴS2 by (3.11) and (3.12).

Step 2: Based on the scene function S and ML estimates ŴS1 and ŴS2, set up a new
Least-Squares estimation problem for the relative warp W12:

Ŵ12 = arg min
W12

∫
z∈domI2

[
warp(S;ŴS2)︸ ︷︷ ︸

Î2

(z)− warp
(
warp(S;ŴS1)︸ ︷︷ ︸

Î1

;W12

)
(z)
]2

dz.

(3.13)

By computing Î1 = warp(S;ŴS1) and Î2 = warp(S;ŴS2), this method essentially
simulates the formation of ML images of I1 and I2. In other words, the registration problem
is posed in terms of ML images:

Ŵ12 = arg min
W12

∫
z∈domI2

[
Î2(z)− warp(Î1;W12)(z)

]2
dz. (3.14)

Note the similarity between (3.14) and (3.5): they are both asymmetric and warp only
one of the images. Indeed, one can use images I1 and I2 as plug-in estimates of Î1 and
Î2, and directly estimate W12. This seems to be exactly the idea behind commonly used
objective functions such as (3.5).
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C1. Backward Algorithm

Step 1: Find ŴS1 and ŴS2 by (3.11) and (3.12).

Step 2: Just as in the forward algorithm B1, set up a Least-Squares warp estimation prob-
lem. This time, however, solve for the warp in the opposite direction, by warping the other
ML image:

Ŵ21 = arg min
W21

∫
y∈domI1

[
warp(S;ŴS1)︸ ︷︷ ︸

Î1

(y)− warp
(
warp(S;ŴS2)︸ ︷︷ ︸

Î2

;W21

)
(y)
]2

dy.

(3.15)

We have intentionally defined both algorithms to be asymmetric: the forward algorithm
B1 warps Î1 onto Î2, and the backward algorithm C1 does the opposite. Using this setup, we
can investigate whether there is a fundamental difference between the two. In Appendix A,
we show that their optimization criteria differ from each other due to a spatially-varying
weighting term. This discrepancy stems from the choice of the noise model in formulating
the Least-Squares problem in Step 2.

Choosing an Algorithm

We proposed three algorithms to estimate the geometric warp between two images. The
generative one requires the knowledge of the scene, but the asymmetric forward and back-

ward methods do not, because their Step 1 can be skipped and I1 and I2 used as proxies for
Î1 and Î2 instead.

In the next section, we weaken our assumptions and revisit the algorithms above. We
show that while the generative formulation can still give us a ML estimate, the asymmetric
algorithms need to modify how they use the observed images.

3.2.3 Practical Case: Real Camera and Unknown Scene

A real camera has blur effects. The response of a camera to an ideal point light source
is characterized by its Point Spread Function (PSF). This means that the warped scene
irradiance will be subject to a convolution with the PSF. For convenience, we still assume
the images to be continuous. Instead of (3.9) and (3.10), we have
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I1(y) = B
(
warp(S;WS1)

)
(y) + ε1(y) ∀y ∈ domI1, (3.16)

I2(z) = B
(
warp(S;WS2)

)
(z) + ε2(z) ∀z ∈ domI2, (3.17)

where the blur operator B(·) indicates a convolution with the PSF:

B
(
S
)
(x) =

∫
w∈domS

S(w)PSF (w − x)dw.

Due to imperfect lenses and density constraints on photo-receptive sensing elements,
the PSF of a real camera is not a delta function [Barbe, 1980]. In fact, the PSF is closely re-
lated to measurement noise characteristics. In order to operate at prescribed frame rates and
signal-to-noise ratio levels, CCD cameras accumulate photon counts over a finite spatial ex-
tent, a procedure called binning. The blur model must not only account for realistic lens
optics, but also capture the binning operations which take place at the sensing elements.

Also in real situations, we do not know the scene radiance S. Assuming a blurry camera
and unknown scene, let us discuss the three algorithms corresponding to those considered
in Section 3.2.2 for the ideal case.

A2. Generative Algorithm

Step 1: ŴS1 = arg min
W1S

∫
y∈domI1

[
I1(y)−B

(
warp(S;WS1)

)
(y)
]2

dy, (3.18)

ŴS2 = arg min
W2S

∫
z∈domI2

[
I2(z)−B

(
warp(S;WS2)

)
(z)
]2

dz. (3.19)

Step 2: Ŵ12 = Ŵ1S ◦ ŴS2 = (ŴS1)
−1 ◦ ŴS2

Since we do not know the scene radiance S, we need to estimate it jointly with the
warps. This approach was proposed in the past as part of a super-resolution problem in
[Hardie et al., 1997]. Although theoretically sound and elegant, the generative algorithm
is rarely used in registering images. Instead, forward or backward algorithms that perform
image-to-image comparisons as in (3.5) are used, presuming their equivalence. In the pres-
ence of camera blur, however, this turns out to be incorrect.
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B2. Forward Algorithm

The corresponding algorithm to that in B1 is

Step 1: Find ŴS1 and ŴS2 using (3.18) and (3.19).

Step 2:

Ŵ12 =arg min
W12

∫
z∈domI2

[
B
(
warp(S;ŴS2)

)︸ ︷︷ ︸
Î2

(z)−B
(
warp

(
warp(S;ŴS1);W12

))︸ ︷︷ ︸
T

(z)
]2
dz.

(3.20)

This algorithm could estimate the warp only if the scene S was known. The immediate
question is whether we can follow the same steps as before, and use the images I1 and I2 in
place of the warped scene. In the presence of blur, this turns out to be not always possible.

Note that the observed image I2 is the ML estimate for

Î2 = B
(
warp(S;ŴS2)

)
.

Suppose we denote by T the following “imaging” function

T = B
(
warp

(
warp(S;ŴS1);W12

))
.

Then the image registration problem of (3.20) becomes

Ŵ12 = arg min
W12

∫
z∈domI2

[
I2(z)− T (z)

]2
dz. (3.21)

Since T is still a function of the unknown S, it cannot be readily computed. For the sake of
argument, consider changing the order of warp and blur operators in T , and define a new
imaging function

T ′ = warp
(

B
(
warp(S;ŴS1)

)︸ ︷︷ ︸
Î1

;W12

)
.

The observed image I1 is the ML estimate for Î1 = B
(
warp(S;ŴS1)

)
, and therefore,
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!

Figure 3.4: The ordering of blur and geometric warp operations is important: In this exam-
ple, we used the same Gaussian blur kernel (σ=2 pixels) before (top row) or after (bottom
row) geometric scaling by a factor of 1/2. Resulting images, shown on the right, differ
from each other.

T ′ = warp(I1;W12). That is, if we replace T by T ′ in (3.21), we would arrive at the
commonly used form (3.5) of objective function in image registration (for p = 2):

Ŵ′
12 = arg min

W12

∫
z∈domI2

[
I2(z)− warp(I1;W12)(z)

]2
dz. (3.22)

However, the warp and blur operations do not commute in general. Fig. 3.4 illustrates
this fact with a simple example. We therefore have T 6= T ′, resulting in Ŵ′

12 6= Ŵ12.
Since Ŵ′

12 does not coincide with the ML solution Ŵ12, it will be a biased estimator.

Compensating for the Bias

While Ŵ′
12 is biased, there exist conditions under which T ′ can help us compute the unbi-

ased estimate Ŵ12. To reveal when this would be possible, we express the blur operators
in T and T ′ explicitly as convolution integrals. For notational conciseness, let us define
S ′ = warp(S;ŴS1).
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T (x) = B
(
warp

(
warp(S;ŴS1);W12

))
(x)

= B
(
warp(S ′;W12)

)
(x)

=

∫
w∈dom warp(S′;W12)

warp(S ′;W12)(w)PSF
(
w − x

)
dw. (3.23)

On the other hand,

T ′(x) = warp
(
B
(
warp(S;ŴS1)

)
;W12

)
(x)

= warp
(
B(S ′);W12

)
(x)

= B
(
S ′)(W12

−1(x)
)

=

∫
v∈domS′

S ′(v)PSF
(
v −W12

−1(x)
)
dv.

To rewrite the integral above in the domain of warp(S ′;W12) , we define w = W12(v).
As dv=

∣∣J(W12
−1)
∣∣dw, changing the variable of integration of v to w will yield

T ′(x) =

∫
w∈dom warp(S′;W12)

warp(S ′;W12)(w)PSF
(
W12

−1(w)−W12
−1(x)

)∣∣J(W12
−1)
∣∣dw.

(3.24)

Intuition for the Restricted Case of a Similarity Transform

Observe the following two differences between T in (3.23) and T ′ in (3.24): first, the
argument of the PSF in (3.24) is subject to a transformation. Second, the determinant of the
warp’s Jacobian appears as a multiplier in (3.24). Before discussing general properties of
this difference and providing a concrete method for its elimination, we develop an intuition
for a restricted case.

Let us consider W12 to be a similarity transformation, which can be parametrized using
scale s, rotation θ, and translation (tx, ty) variables. The argument of the PSF in (3.24) is
then
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W12
−1(w)−W12

−1(x) =

[s cos θ −s sin θ
s sin θ s cos θ

]−1[
wx

wy

]
−
[
tx
ty

]−
[s cos θ −s sin θ

s sin θ s cos θ

]−1[
xx

xy

]
−
[
tx
ty

]
=

[
cos θ

s
sin θ

s
− sin θ

s
cos θ

s

][
wx

wy

]
−
[

cos θ
s

sin θ
s

− sin θ
s

cos θ
s

][
xx

xy

]
=

[
cos θ

s
sin θ

s
− sin θ

s
cos θ

s

][
wx−xx

wy−xy

]
= W′(w − x),

where W′ is a similarity transform with scale 1
s
, rotation θ, and zero translation. Further-

more, if the camera’s PSF is rotation-invariant (i.e., isotropic),

PSF
(
W′(w − x)

)
= PSF (

w − x

s
).

In summary, when W12 is limited to similarity transforms and the PSF is isotropic,
(3.24) becomes

T ′(x) =

∫
w∈dom warp(S′;W12)

warp(S ′;W12)(w)PSF
(w−x

s

)∣∣J(W12
−1)
∣∣dw. (3.25)

A comparison of (3.25) with (3.23) reveals how the imaging functions T ′ and T relate to
each other. Although they are both obtained by blurring warp(S ′;W12), the actual blur
kernels are different. Imagine that T has the blur kernel PSF (·), shown in the middle
of Fig. 3.5. Since the blur kernel of T ′ is PSF ( ·

s
), it will have a dilated or compressed

shape, and it will be area-normalized through the multiplicative term
∣∣J(W12

−1)
∣∣ = 1

s2 .
For 0 < s < 1, the kernel gets compressed (Fig. 3.5, left), resulting in a T ′ less blurry than
T . For s = 1, we have equality between T and T ′. Finally, for s > 1, the effective blur
kernel becomes wider (Fig. 3.5, right), causing T ′ to be even more blurred than T .

The analysis above provides the conditions under which T ′ can be used in emulating T ,
and the forward algorithm B2 still work even if the scene function S is unknown:
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Figure 3.5: Given I1, we can compute T ′ = W12(I1). However, to find the ML warp
estimates, we need to evaluate T , which originally results from a convolution operation
with the PSF of the camera (middle). Depending on the value of s, estimating T from T ′

turns out to be a blurring (0 < s < 1) or deblurring (s > 1) problem.

• For s = 1, T ′ can readily replace T .

• For 0 < s < 1, we may blur T ′ further to make up for the difference in blur kernels
PSF (·) and 1

s2 PSF ( ·
s
). Only after this blur compensation would the minimizer of

(3.22) correspond to forward algorithm’s warp estimate.

• For s > 1, the wider blurring kernel produces an overblurred T ′, and emulating T is
therefore a deblurring problem: this is in general an ill-posed inverse problem, and
difficult to solve [Banham and Katsaggelos, 1997].

Note that the quantities T and T ′ in (3.23) and (3.25) were derived for the forward

algorithm. By definition, when the forward algorithm scales up (i.e., s > 1), the backward

algorithm scales down (0 < 1
s

< 1). Therefore, in situations where s > 1, the deblurring
problem can be avoided by simply switching to the algorithm which solves for the warp
in the opposite direction. Hence, for obtaining an unbiased estimate of the warp between
two images, there is a natural choice between the forward and backward algorithms: One
should pick the direction of warp such that, after necessary blurring, it scales one image
down onto the other, i.e., the higher-resolution image should be warped onto the lower2.
Since the two images are not interchangeable, their registration is an asymmetric problem.

2Could one still blur the high-resolution image, but warp the low-resolution image onto the higher-
resolution one instead? It is hard to tell which optimization criterion this approach would be minimizing,
and whether its solution would correspond to a Least-Squares estimate of the warp.
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More General Cases

For more complex warps than similarity, the blur varies spatially and the analysis above
does not apply. The inequality between T and T ′ is still due to the difference between the
effective blur kernels in (3.23) and (3.24), but the analysis becomes harder. Probably the
general solution is to use the generative algorithm and explicitly recover S.

In specific cases, however, it may be possible to derive an algorithm, but this has to be
done on a case-by-case basis. In section 3.3, we do this for the case of piecewise affine
warps used in AAMs.

C2. Backward Algorithm

The above analysis also applies to the backward algorithm: if it happens to be scaling
down the higher-resolution image onto the lower-resolution one, incorporating a blurring
step will ensure that the warp estimate will be unbiased. However, if it happens to be
scaling the lower-resolution image onto the higher, it will remain biased unless we deblur
the low-resolution image.

3.2.4 The Asymmetry Principle

We argued that the problem of image registration is inherently asymmetric, and that ignor-
ing this fact leads to biased estimates. We used a simple yet illuminating scenario start-
ing with an idealized setting wherein the underlying scene radiance field was known. We
presented three algorithms (generative, forward and backward) to estimate the geometric
warp which maps between the image coordinate frames. We then investigated how these
algorithms could be used in the absence of scene information. Our analysis exposed the
conditions under which forward and backward algorithms could estimate the warp based
on the images only, and prescribed a specific blurring step in the presence of relative scaling
between images. Such cases turned out to impose a particular warp direction for ensuring
unbiased estimates.

Our asymmetry claim is based on the scaling-induced extra blurring that neither a for-

ward nor a backward algorithm can overcome. It depends upon whichever happens to be
warping the lower-resolution image onto the higher-resolution one. We have shown that
an inability to deblur, which is an ill-posed inverse problem, results in a bias that is inde-
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pendent of the assumed observation noise model. The analysis remains applicable to other
cases where blur-related discrepancies result not necessarily from camera poses and zoom
levels, but from imaging modalities or instrument characteristics.

Quantification of the scaling-induced bias is not trivial because blur effects are ulti-
mately related to image content: while blurring (i.e., low-pass filtering) visually rich and
detailed images would produce a significant effect, it would barely alter already smooth im-
ages. In Appendix B, we quantify the magnitude of the bias in translation-only registration
problems between face images of different resolutions.

What does the asymmetry imply for Face Hallucination with AAMs? Note that the
traditional fitting criterion (3.4) completely overlooks the bias problem: it warps and inter-
polates low-resolution observations to compare them with the model template. This is an
artifact of formulation and it will cause the fitting accuracy to drop with higher scaling fac-
tors. As remedy, the next section formulates a novel algorithm that respects the asymmetry
and incorporates an explicit model of the blur into the fitting formulation.

3.3 Resolution-Aware Fitting

3.3.1 Formulation
We propose an alternative to the fitting criterion (3.4). Recognizing the asymmetry of
the problem, we not only change the warp direction, but also introduce a model of the
blur/image formation process. From a generative point of view, this simulates the pixel-
wise image formation process in a CCD camera [Barbe, 1980]. We feed the AAM and its
current parameters into a camera model, and compare the outcome against the observed
low-resolution image. This process is illustrated in Fig. 3.6.

Mathematically, the proposed fitting criterion is∑
u∈domL

[
L(u)−B

(
u; H(W(p); λ)

)]2
, (3.26)

where the summation is now over pixel coordinates u of the observed image L. That is,
if (3.4) was the forward algorithm of Section 3.2, (3.26) is the backward algorithm with
an additional blur operator B. This blur simulates a low-resolution image of the object,
believed to be what the camera would have captured under current AAM parameters3.

3If the camera is expected to have aliasing, our method should simulate that as well.
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Figure 3.6: The Resolution-Aware Fitting algorithm simulates the formation of low-
resolution images in a digital camera. In contrast to the traditional formulation shown
in Fig. 3.2, the fitting criterion is defined between observed and simulated image pixels.

Although this formulation can accommodate arbitrary camera models and point spread
functions, in this thesis, we use the rectangular PSF

B
(
u; H(W(p); λ)

)
=

1

area(bin(u))

∫
u′∈bin(u)

H
(
W

−1

(u′;p); λ
)
du′,

where the continuous integral is defined over bin(u), the sensing area of the discrete pixel
u. As illustrated in Fig. 3.6, the blur operator itself is independent of AAM parameters.
It simply averages out those template pixel intensities which map into a low-resolution
pixel’s sensing area under the current warp p. To express the integral above in the shape-
normalized coordinate frame s0, we observe that u′ = W(x;p), and consequently, du′ =∣∣J(W(p)

)∣∣dx,
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B
(
u; H(W(p); λ)

)
=

1

area(bin(u))

∫
x∈doms0 s.t.

W(x;p) ∈ bin(u)

H(x; λ)
∣∣J(W(p)

)∣∣dx.

We implement this integration as a discrete, Jacobian-weighted sum over template pixels,

B
(
u; H(W(p); λ)

)
=

1

area(bin(u))

∑
x∈doms0 s.t.

u−
h

.5

.5

i
<W(x;p)<u+

h
.5
.5

i
H(x; λ)

∣∣J(W(p)
)∣∣. (3.27)

Observe that our formulation avoids interpolating low-resolution data, and models the ob-
ject appearance, geometric deformation, and image formation processes simultaneously.

3.3.2 Algorithm Derivation

We now present a Gauss-Newton gradient-descent algorithm for the minimization of the
fitting criterion (3.26) with respect to p and λ. This algorithm gives up the computational
efficiency of [Matthews and Baker, 2004] in exchange for a more accurate/unbiased esti-
mate of the parameters. Until convergence, updates ∆p and ∆λ are iteratively computed
and added to the current estimates. The derivation below closely follows that of the si-

multaneous algorithm in [Baker et al., 2003]. Expressing A(λ) as a sum of the mean and
linearly weighted basis images, the fitting criterion is∑

u∈domL

[
L(u)−B

(
u; H0

(
W(p)

)
+

m∑
i=1

λiHi

(
W(p)

))]2

.

Consider the Taylor expansion

∑
u∈domL

[
L(u)−B

(
u; H0

(
W(p+∆p)

)
+

m∑
i=1

(λi+∆λi)Hi

(
W(p+∆p)

))]2

.

Ignoring its second-order terms, the fitting criterion is approximately

∑
u∈domL

[
L(u)−B

(
u;H0

(
W(p)

)
+∇H0

∂W

∂p
∆p+

m∑
i=1

(λi+∆λi)
(
Hi

(
W(p)

)
+∇Hi

∂W

∂p
∆p
))]2

.
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For notational conciseness, denote n + m steepest-descent images as

SDsim=

[(
∇H0+

m∑
i=1

λi∇Hi

)∂W

∂p1

, ...,
(
∇H0+

m∑
i=1

λi∇Hi

)∂W

∂pn

, H1

(
W(p)

)
, ..., Hm

(
W(p)

)]
.

We can now compactly rewrite the fitting criterion as

∑
u∈domL

[
L(u)−B

(
u; H0(W(p))+

m∑
i=1

λiHi(W(p))−SDsim

(
∆p
∆λ

))]2

.

Observing that B is a linear operator, the objective function to be minimized is

∑
u∈domL

[
L(u)−B

(
u; H0

(
W(p)

))
+

m∑
i=1

λiB
(
u; Hi

(
W(p)

))
−B

(
u;SDsim

)(∆p
∆λ

)]2

,

whose minimum is given by(
∆p
∆λ

)
=−H

−1

sim

∑
u∈domL

B
(
u;SDT

sim

)[
L(u)−B

(
u; H0

(
W(p)

))
+

m∑
i=1

λiB
(
u; Hi

(
W(p)

))]
,

where Hsim is the Hessian with appearance variation:

Hsim =
∑

u∈domL

B
(
u;SDT

sim

)
B
(
u;SDsim

)
.

3.4 Experiments
We will compare the RAF formulation (3.26) to the traditional formulation in (3.4). In
particular, we will compare the algorithm detailed in Section 3.3.2 (referred to as RAF)
with the simultaneous algorithm of [Gross et al., 2005] (referred to as AAMR-SIM), which
optimizes (3.4). Earlier work [Baker et al., 2003; Gross et al., 2005] empirically showed
that simultaneously solving for the shape and appearance parameters performs better than
projecting out the appearance, although at a greater computational cost. Comparing with
the simultaneous algorithm [Gross et al., 2005] is therefore a fairer comparison than with
the project-out algorithm [Matthews and Baker, 2004].

We performed two types of experiments: synthetic and real. First, we synthetically
downsampled images, and compared our fitting (and hallucination) results against high-
resolution “ground truth” fits. We generated a variety of input test sequences by a range
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of scaling factors, and measured each algorithm’s accuracy at lower input resolutions.
These will be presented as quantitative results. Second, we ran our algorithms on real
low-resolution images to capture their performance under real noise processes. We present
these results qualitatively.

Independently of the resolution of a given test sequence, we initialized all algorithms
with fitting results at the highest resolution. This allowed us to discard initialization qual-
ity as a confounding factor when comparing performances across resolution levels. While
manual initialization is reasonable at higher resolutions, it becomes increasingly sub-optimal
in lower resolutions, jeopardizing the fairness of comparisons across scales. Once in track-
ing mode, the fitting of each frame was initialized with the parameters of the preceding
frame.

3.4.1 Metrics of Fit and Hallucination Accuracy

The most appropriate metric of fit quality depends on applications. Face Hallucination
aims to synthesize detailed face images and their expressions correctly; therefore accurate
estimates are required for both shape and appearance parameters. Other domains may
be less demanding: in object tracking, only the global pose (i.e., the similarity transform
parameters) may be of interest. In lip-reading, non-rigid deformations of a speaker’s lips
(encoded by a facial AAM’s shape coefficients) may carry all the necessary information.

We defined two metrics, illustrated in Fig. 3.7, to summarize the fitting accuracy of the
RAF and AAMR-SIM algorithms. The tracking error is the average of positional error of
landmarks (such as the corner of nostrils): this error is a combined effect of both simi-
larity transform (scale, rotation, and translation) and non-rigid deformation parameters, as
encoded by the estimate p̂. The reconstruction error, on the other hand, is computed by
comparing the synthesized (hallucinated) model instance, parametrized by λ̂, against the
ground truth image in terms of RMS error of intensities. In addition, we report estimation
errors for the coefficients of the top four principal shape and appearance modes.

For all test sequences included in this chapter, only the landmark coordinates were
available as hand-labeled, high-resolution ground truth data. To infer the ground truth
values for the similarity, non-rigid shape and appearance variables, we ran the AAMR-
SIM tracker at the original resolution of the videos, and verified its convergence (each
landmark’s tracking error smaller than 1 high-resolution pixel). The resulting parameters
were then regarded as “ground truth” in subsequent low-resolution tests.
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Figure 3.7: We define two metrics to compare the fitting accuracy of algorithms. The
average landmark tracking error combines the estimation accuracy of the similarity and
non-rigid shape parameters. The reconstruction (i.e., hallucination) error quantifies how
well the underlying high-resolution face was inferred from the low-resolution data.

3.4.2 Examples

Before presenting extensive quantitative results, we begin with some examples of our error
metrics and their temporal behavior. In reporting Euclidean distance metrics (as in transla-
tion parameters or landmark tracking error), we scale-normalize the estimates so that their
numerical values are in high-resolution pixel units. Similarly, we normalize each shape
and appearance coefficient according to its mode’s variance and report them in units of
their standard deviation.

Fig. 3.8 plots error trajectories of a low-resolution tracking experiment, where the sub-
ject’s speaking and eye blinking were the major sources of motion. The input sequence was
10 times lower in resolution than the AAM. The error metrics indicate that RAF tracked
the face consistently better than AAMR-SIM. To provide further evidence, Fig. 3.9 shows
temporal trajectories of selected variables. Those estimated by AAMR-SIM do not follow
the ground truth values, and remain mostly constant. In contrast, RAF can recover the non-
rigid deformations and appearance changes, amounting to a more accurate recovery of the
facial expressions4.

4Demonstration videos are available at http://www.cs.cmu.edu/˜dedeoglu/thesis
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Figure 3.8: The landmark tracking (upper left) and reconstruction/hallucination (upper
right) error metrics are plotted as a function of time for a 10-fold resolution degraded track-
ing experiment. Included images (bottom, captured at frame no. 102) display the mesh fits
(lower left) as well as synthesized (hallucinated) model images (lower right). We overlay
the latter onto pixel-replicated low-resolution inputs to demonstrate how well the underly-
ing high-resolution image could be inferred.

3.4.3 Quantitative Evaluation

It would be impractical to report time trajectories for all our experiments. In the following,
we report the temporal mean and standard deviation of the Root Mean Squared (RMS) er-
rors of selected variables. Since lost trackers can easily corrupt these statistics with outliers,
we required both trackers to produce valid results (i.e., not have lost track of the face) for a
fitting instance to be included in these statistics. This was achieved by manually inspecting
all experiments and verifying that faces were tracked reasonably well.

Recall that each tracking experiment was initialized with the highest-resolution fitting
results. At lower input resolutions, such an optimistic initialization would cause the fitting
performance to be overestimated at the beginning. To minimize this effect, we discarded
the fitting results of the first 20 frames of each sequence.

Fig. 3.10 compares the AAMR-SIM and RAF algorithms for fitting a single-person
AAM. The list at upper-left corner provides a brief summary of experimental conditions:
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Figure 3.9: Selected temporal trajectories are shown for a 10-fold resolution degraded face
tracking experiment. As the supplemental video material shows, the main source of motion
were the subject’s speaking and eye blinking. See Fig. 3.8 for one example frame of this
sequence. The estimates of AAMR-SIM do not follow the ground truth, and remain mostly
constant. In contrast, RAF remains close to ground truth in all trajectories, indicating that
it is able to extract the underlying facial expressions correctly.

this AAM was built using 31 training images and was tested on a set of 180. These were
8-bit grayscale images and the AAM’s native resolution was 100x104 pixel. We retained
95% of the total variation, yielding 11 shape and 23 appearance principal components.

The plots in Fig. 3.10 present extensive quantitative comparisons between the fitting
algorithms. They are organized to show RMS error metrics as a function of downscaling
factor. Observe how AAMR-SIM and RAF perform equally well at downsampling factor 2.
This case corresponds to a minor degradation in resolution, and the fact that both algorithms
perform similarly confirms the correctness of our derivations as well as implementations.
Starting from downsampling factor 4, RAF brings substantial accuracy improvements over
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Figure 3.10: Quantitative comparison between the AAMR-SIM and RAF algorithms for
fitting the single-person AAM to a 180 frame-long sequence. The horizontal axis is the
downscaling factor of the input data. Both algorithms perform well at half-resolution, val-
idating the derivation and implementation of RAF. The latter brings substantial improve-
ments across all metrics for downscaling factors 4 and higher. The principal modes are
displayed in order of % energy (i.e., variation) they capture.

AAMR-SIM across all metrics and variables.

The performance of a model-based method ultimately depends on the quality of the
available model. In order to investigate how the AAM fitting accuracy varies with model
complexity, we also ran our experiments on a multiperson AAM, which we built using data
from 5 subjects. Details of this AAM are provided in the upper-left corner of Fig. 3.11,
organized in the same fashion as Fig. 3.10. The multiperson appearance model has almost
twice the number of appearance modes compared to the single-person case, indicating a
richer subspace being modeled. Again, RAF is consistently superior to AAMR-SIM in
accuracy with regard to both tracking and reconstruction.
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Figure 3.11: Quantitative comparison between the AAMR-SIM and RAF algorithms for
fitting the multiperson (5 subjects) AAM. The horizontal axis is the downscaling factor of
the input data. Each reported mean and standard deviation is calculated over 900 frames,
comprising 180 frames for each of 5 subjects. RAF improves the tracking, reconstruction,
non-rigid shape, and appearance estimates considerably.

3.4.4 Qualitative Results

Simulated Low-Resolution Data

We can qualitatively evaluate a fitting result by inspecting its reconstructed/hallucinated
face image. In the following, we overlay such reconstructions on pixel-replicated original
low-resolution inputs at where the trackers thought the faces were.

Fig. 3.12 shows every second frame in a sequence of the single-person AAM tracking
experiment. Observe that RAF correctly extracts the eye blink and mouth opening, whereas
AAMR-SIM does not. Fig. 3.13 offers a visual alternative for assessing how the trackers
degrade with increased downscaling: it displays the single-person AAM results for frame
no. 102 across various scales. While RAF can consistently recover the open eyes and
mouth, AAMR-SIM’s estimates degrade quickly: starting from downsampling factor 6,
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Figure 3.12: Exemplar subsequence of high-resolution reconstructions (i.e., hallucina-
tions), obtained by fitting the single-person AAM. Observe how RAF correctly extracts
the eye blink and mouth opening, whereas AAMR-SIM does not.

the eyes and mouth are first estimated to be half-open, and then totally closed. Similarly,
Fig. 3.14 displays snapshots of different test subjects, all tracked using the multiperson
AAM of Fig. 3.11. In both single- and multiperson AAMs, we find the visual reconstruction
quality of RAF to be consistently superior to that of AAMR-SIM.

Real Low-Resolution Data

We also compared the two AAM fitting algorithms on real low-resolution videos. Using a
Sony DCR-VX2000 camera (15 fps in progressive mode and DV-format compression), we
video-taped a particular subject’s face at various distances, yielding face heights between
20 and 120 pixels in images. At each camera distance, the subject uttered the sequence
“left-right-up-down-smile” and moved her face accordingly. We built a face AAM using
43 of high-resolution frames, and verified its tracking and reconstruction performance in
that resolution. The AAM was 110x114x3 pixels, with 14 non-rigid shape and 27 ap-
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Figure 3.13: We compared the AAMR-SIM and RAF algorithms over a range of scales.
Lower and lower resolution versions of input frame no. 102 are shown in the top row. While
AAMR-SIM degrades quickly, RAF maintains a reasonable estimate of the face.

pearance modes. We fit this AAM to videos using the AAMR-SIM and RAF algorithms.
Initialization was done manually, by scaling and positioning the AAM.

Fig. 3.15 compares face reconstructions for an eye-blink subsequence. The observed
face is 33 pixels high, corresponding to a downscaling factor of about 3. Note the sharpness
of RAF hallucinations. In contrast, AAMR-SIM misses the eye-blink, and hallucinates
blurrier faces.

On all video sequences with downscaling factors 3.5 and higher (where the face height
ranged from 30 to 20 pixels), AAMR-SIM consistently lost track of the face. In con-
trast, RAF kept tracking and reconstructing the face reasonably well. In Fig. 3.16, we
include selected frames of RAF hallucinations. The faces are approximately 22 pixels high
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Figure 3.14: Selected frames are shown to visually compare hallucinated faces by fitting a
multiperson AAM. The quantitative improvement in appearance estimates (Fig. 3.11) has
visible effects. Mesh displays are omitted due to a lack of significant difference.
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Figure 3.15: The top row shows DV-compressed video frames. The face is about 33 pixels
high (downscaling factor ∼3). AAMR-SIM (bottom row) misses the eye-blink, and recon-
structs overly smooth faces. Indeed, AAMR-SIM fails to track faces any smaller than this
size. In contrast, RAF (middle row) infers and reconstructs the underlying facial expression
with crisp details.

(downscaling factor ∼5). At this resolution, RAF can still recover the underlying facial
expression, but the reconstructions start growing unstable.

3.5 Discussion

3.5.1 Performance Metrics

When facial features are not estimated correctly, Face Hallucination produces high-resolution,
yet incorrect and unrealistic face images. Since hallucination fidelity to the underlying face
was our priority, we exclusively focused on accuracy measures in comparing AAM fitting
algorithms. However, in other applications (e.g., non-rigid registration of medical images),
criteria such as the repeatability, robustness and efficiency may be as important.

In extremely low resolutions, we found the AAMR-SIM algorithm to be more robust
than RAF. Given the smoothing effect of (bilinear) interpolation, this does not seem sur-
prising. While RAF struggles among the many parameter settings which yield almost the
same low-resolution images, AAMR-SIM commits to an interpolated high-resolution ob-
servation and pursues the fit. In the future, we plan to study RAF’s robustness more closely.
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Figure 3.16: Selected reconstructions on DV-compressed video. Although the face is only
22 pixels high (downscaling factor ∼5), RAF can still track the face, recover its expres-
sions, and reconstruct it reasonably well. The temporal jitter and instability observed at
this resolution can be seen in videos available at http://www.cs.cmu.edu/˜dedeoglu/thesis.

3.5.2 Computational Implications of the Asymmetry Principle

Constraints on the direction of the geometric warp have important consequences. Recall
how the traditional AAM fitting criterion (3.4) had conveniently defined the summation
over the model template pixels. Since the latter do not change as a function of the input,
computational savings become possible. For instance, the inverse-compositional tracker of
[Matthews and Baker, 2004] considers the Taylor expansion for the warp parameters over
the model (i.e., AAM appearance basis) and pre-computes all associated Jacobians and
Hessians. Unfortunately, the RAF formulation of Section 3.3 does not benefit from such
pre-computations. Implemented in MATLAB, the average fitting time (in tracking mode)
of AAMR-SIM is 3 seconds, whereas RAF takes about 10 times longer. One area for future
work is to investigate how such savings may be possible.

Unless deblurring becomes possible, either the forward or the backward algorithm of
Section 3.2 will remain biased under relative scaling. By their design, symmetric objective
functions of the form (3.6) can never get rid of this bias; it will always appear in one of the
two terms. Nevertheless, if there is not a large scaling, the symmetric formulation is still
practical.
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3.5.3 The Bootstrapping Problem

It has been previously argued that “without any other prior knowledge, the registration
problem is symmetric” [Cachier and Rey, 2000]. We claim that the blurry nature of real
images breaks this symmetry as soon as there is relative scaling. Yet, we don’t know a priori
whether to expect any relative scaling between two images, and if so, which of them ought
to be downscaled. This uncertainty raises the question, which warp direction (i.e., forward

or backward algorithm of Section 3.2) should be employed initially to guess the scaling.
The empirical evidence we gathered in the face domain suggests that the bias induced by
using the non-optimal warp algorithm is not big enough to instigate a wrong decision about
the direction of the scaling. In other words, we expect both algorithms to be acceptably
correct in hinting at the relative scaling, and based on this initial result we could commit to
the correct warp direction and obtain unbiased estimates.

3.5.4 Heuristics and Regularization

One way of dealing with low-resolution data is to construct a scale-space pyramid of AAMs
and to model multiple resolutions at once [Liu et al., 2006]. Due to blur, higher-level (i.e.,
lower-resolution) AAMs would have more compact appearance models and would there-
fore be easier to fit. However, their reconstructions would also be blurry and therefore not
well-suited for hallucination. In our work we only fit high-resolution AAMs, independently
of how much lower in resolution the observations were. This allowed us to hallucinate faces
in high-resolution.

We have exclusively dealt with the formulation of the image registration problem. The
two AAM fitting algorithms compared in Section 3.4 use exactly the same Gauss-Newton
minimization method and parameters such as step size, number of iterations, etc. As such,
our discussion remains orthogonal to practical search heuristics such as multiresolution,
hierarchical and progressive methods [Anandan, 1989; Bergen et al., 1992]. We can still
exploit the advantages of these: for instance, a pyramid-style fitting algorithm would in-
crease the robustness of RAF, complementing its accuracy at the bottom level.

Finally, recall that both AAMR-SIM and RAF are Gauss-Newton gradient-descent
methods that iteratively update the entire set of AAM parameters. The single and multi-
person AAMs have 34 and 52 parameters respectively, all being estimated simultaneously.
Beyond a certain downscaling factor, there are so few face pixels that singularities arise
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while inverting the Hessians. This practically limited our scaling range to factors of 12 and
16 in the above cases. Parameter scheduling and regularization techniques would help, but
such issues are beyond the scope of this thesis.

3.5.5 Related Issues in Computer Vision

A relevant discussion on symmetric vs. asymmetric formulations can be found in [Horn,
1987], where the goal was to estimate the similarity transformation between two sets of
points with known correspondence. It was observed that the sensitivity of the scale estimate
depended on the direction of the transformation. Consequently, an asymmetric objective
function was recommended for those cases where one set of coordinates might be known
with much greater precision than the other.

Earlier work on image matching with point features [Hansen and Morse, 1999; Dufour-
naud et al., 2000] observed that interest points were not invariant to scale. As a remedy,
these points were computed for a variety of scale (i.e., blur) levels, which parallels the extra
blurring advocated in this work.

Previously, systematic biases in optical flow methods were shown to stem from errors
in image gradient estimation [Kearney et al., 1987; Brandt, 1994; Nagel and Haag, 1998;
Fermueller et al., 2001; Bride and Meer, 2001] or from the data-dependence of the noise
process [Kanatani, 1996; Bride and Meer, 2001]. In contrast, we explored a potential bias
arising from the resolution-limited nature of real images.

From a practical point of view, we would expect to have difficulties if the two cam-
eras were defocused by different degrees: Since our blur compensation step estimates the
amount of necessary blurring from the relative scaling factor, it would not be able to ac-
count for the total blur accurately. We plan to explore this phenomenon in future work.

3.5.6 Imposing Priors onto AAM Parameters

Recall that both the shape and appearance components of an AAM are characterized through
Principle Components Analysis, which assumes that the data follows a Gaussian distribu-
tion. According to this model, a multivariate Gaussian, centered at the mean of the training
data, would be the natural prior for AAM parameters. This idea was explored by [Cootes
and Taylor, 2001], who reported mixed results: while the shape prior reduced the position-
ing error of the landmarks, it also deteriorated the appearance estimates.
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A weaker variant of the Gaussian prior clamps the AAM parameters such that they re-
main within a prescribed hyper-cube or -ellipsoid [Stegmann, 2004, p. 145]. This imposes
a uniform prior within the allowed parameter hyper-volume, and completely bans regions
outside of it. We used this hard constraint on all fitting algorithms reported in this chapter,
and found that it improved fitting robustness.

As part of this thesis research, we also characterized and imposed more sophisticated
priors on AAM parameters, but our attempts did not lead to significant improvements. For
instance, we investigated the use of temporal smoothness priors. In a separate approach, we
approximately specified which nonlinear regions of the parameter space produced human-
like faces, and banned those regions that did not. Overall, we found that our priors did not
render the fitting problem more robust or accurate. In our experience, the data term (and its
local minima) dominates the fitting process in single-hypothesis trackers, and the addition
of the prior does not help regularize the search. When applied to AAMs, multi-hypothesis
trackers such as [Isard and Blake, 1998] might be able to benefit from these priors.

3.6 Conclusion
This chapter demonstrated the importance of carefully crafted metrics and algorithms in
meeting the challenges of resolution degradation in Face Hallucination.

The key observation is a resolution-induced asymmetry in model-to-image or image-
to-image registration problems: under relative scaling, one must start with the higher-
resolution image (or model) and warp it onto the lower-resolution one while incorporating
a blur-formation process in the fitting criterion. If the scaling-induced bias is ignored, or
the lower-resolution image is warped (and interpolated) onto the higher-resolution one, one
should expect the warp estimated to be biased.

The asymmetry has tangible consequences. We demonstrated and quantified its detri-
mental effects in Face Hallucination using AAMs. We showed how the traditional fitting
formulation overlooks the asymmetry issue, causing the fitting accuracy to degrade quickly
when the observed faces are smaller than their model. We then formulated a novel algo-
rithm that respected the asymmetry, and incorporated an explicit model of the blur into the
fitting formulation. We compared this algorithm against a state-of-the-art method across
a variety of resolutions and AAM complexity levels. Experimental results showed signif-
icant accuracy improvements in both shape and appearance estimates when fitting to low-
resolution data. This resulted in much more detailed and accurate Face Hallucinations.



Chapter 4

Face Hallucination with a Video Model

In a video sequence, the appearance of a face does not change randomly. On the contrary,
the head motion, facial expressions and speech produce a rich set of temporal dynamics.
These can be as smooth as raising eyebrows, or as abrupt as eye blinks. This chapter
develops a Face Hallucination framework that exploits the spatio-temporal dynamics of
faces. It demonstrates that a video-based approach to hallucination performs better than an
image-based one that operates frame-by-frame.

Section 4.1 underlines the shortcomings of the parametric image-based approach of
Chapter 3 and motivates a non-parametric video representation. Section 4.2 introduces the
main computational tool of this chapter: a statistical generative model of face videos. By
treating a video as a composition of space-time patches, this model can efficiently repre-
sent and reason about the complex visual phenomena to be hallucinated. The patch-based
representation is further exploited to define a data-driven prior on a 3-dimensional Markov
Random Field in space and time.

Section 4.3 poses Face Hallucination as a probabilistic inference problem over the pro-
posed graphical model and presents an algorithm for solving it. The experimental results
of Section 4.4 demonstrate that temporal dynamics regularize the hallucination problem.
Finally, Section 4.5 discusses the limitations and potential extensions of the approach.

55
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4.1 Motivation

As in Chapter 3, we follow the analysis-by-synthesis paradigm in solving the hallucination
problem. First, we briefly revisit the image model of Chapter 3 and unveil the key aspects
of our video model.

4.1.1 Parametric vs. Data-Driven Models

Chapter 3 treated Face Hallucination as a parametric model-fitting problem . The approach
involved recovering the (face image) model parameters that best explained the observed
low-resolution data, and then using these parameters to synthesize a model instance, i.e., a
high-resolution face image. This turned a difficult high-resolution image estimation prob-
lem (with 100x100=10000 unknown pixel intensities) into a more manageable parameter
estimation one (with only 50 shape/appearance coefficients).

The number of face pixels drops with image size. Consequently, model-fitting ap-
proaches run out of data beyond a certain resolution. In a parametric optimization process,
the problem exhibits itself as a numerical one. For instance, the Hessian of the Gauss-
Newton search algorithm of Section 3.3 becomes singular and cannot be inverted. To pro-
ceed, one has to introduce regularization and randomization strategies, but these are far
more complex than an analytical gradient-descent.

The difficulties above raises the question as to whether parameter estimation has to be
an integral part of hallucination. Would it be possible to infer high-resolution intensities
directly from their low-resolution counterparts, without having to recover intermediate pa-
rameters? This chapter provides a positive answer. The proposed approach is data-driven,
i.e., it uses a training database of low- and high-resolution image pairs. The low-to-high
inference problem is then tackled via look-ups among available examples. Although com-
putationally more expensive, this approach does not suffer from the singularity issues of
parameter estimation.

4.1.2 Global vs. Local Representation

In many problems, parametric models built from a small training set can generalize and
successfully predict novel data. For instance, given a set of shape and appearance param-
eters, the AAMs of Chapter 3 can synthesize high-resolution face images for a continuous
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Figure 4.1: We decompose face videos into space-time patches and thereby reduce the
dimensionality of the data to be modeled. The two examples shown here capture the visual
phenomena of the eye-blink and the occlusion of the teeth. These patches are 16× 16 pixel
wide and have a temporal support of 3 frames.

range of expression and pose variation. Building a non-parametric, example-based model
to capture the same variation is a daunting task: it requires collecting image samples for all
possible facial expressions under each and every pose. If the space is not sampled densely, a
data-driven model would overfit to the training data and not generalize [Wasserman, 2006].

Our strategy to avoid the overfitting problem is to decompose face images into a col-
lection of patches and thereby reduce their dimensionality. Unfortunately, this destroys the
global structure of faces and necessitates a co-occurrence model among the patches, which
is a challenge by itself. As a trade-off between treating face patches all independently
and building a full statistical co-occurrence model among them, we model a more limited
interaction and consider only local couplings between neighboring patches.

4.1.3 Image vs. Video

The image-based approach of Chapter 3 ignored the temporal aspect of videos and hallu-
cinated faces in a frame-wise fashion. Faces do not change randomly. On the contrary, the
motion of the head, speech and facial expressions produce a rich set of temporal dynamics.
The main goal of this chapter is to exploit these dynamics in the hallucination process. For
this end, we extend the patch-based image representation into the temporal domain and
compose videos out of space-time patches. As illustrated in Fig. 4.1, these patches capture
the complex visual phenomena directly while still benefiting from locality (i.e., reduced
dimensionality) in both space and time.

The video model we propose for Face Hallucination is inspired by the key aspects
of the following earlier work. First, by using a spatially varying prior as in [Baker and
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Kanade, 2002], the computational requirements are kept relatively low. Furthermore, the
spatial couplings in [Freeman et al., 2000] are extended to capture both spatial and temporal
consistencies in the hallucinated videos. In contrast to [Bishop et al., 2003], we do not
resort to re-seeding our high-resolution hypothesis space with earlier solutions, but instead
model and deal with temporal visual phenomena directly.

4.2 A Graphical Model for Face Videos

We aim to integrate our domain knowledge about the videos of human faces with the phys-
ical principles of image formation. In the following, we first introduce our graphical model
for the formation of low-resolution observations. For clarity, Section 4.2.1 first describes
this generative model for the static image case, and Section 4.2.2 extends the latter to the
temporal dimension.

4.2.1 Generative Image Model

A graphical model is a concise tool for expressing causal and statistical dependence re-
lationships between random variables of interest. Specifically, two nodes which are not
connected by a link are independent when conditioned upon their neighbors. Such condi-
tional independencies will play a crucial role in Section 4.3, where we will articulate our
probabilistic inference algorithm.

We use the graphical model illustrated in Fig. 4.2 to integrate our domain knowledge
about the images (or videos) of human faces with the physical principles of image forma-
tion. Our model for low-resolution observations comprises two steps. Starting from the
bottom, it prescribes to:

1. Generate a high-resolution template T to be imposed as prior on the hallucination H .

2. Blur and downsample the hallucination H to simulate the formation of the low-
resolution image L.

The starting point is a high-resolution template image T , generated following a prior
model about possible images in the domain. Building a generative statistical model of T

that can account for all possible face images (and videos) represents a formidable challenge.
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Figure 4.2: Starting from a low-resolution face L, Face Hallucination estimates a high-
resolution face H . In modeling this problem, we integrate our domain knowledge about
the images (or videos) of human faces with the physical principles of image formation.
The nodes in this graphical model correspond to space-time patches. The prior template T
composes facial expressions from a large database of training examples.

In order to circumvent this modeling problem, we take a non-parametric approach and draw
samples from a large database of examples. Since capturing all possible variations of facial
expressions and features requires a very large number of examples to be stored, one can
adopt local models, defined over image patches, and treat them independently, as in [Baker
and Kanade, 2002]. However, such a choice fails to capture those events which span multi-
ple patches. As a computational trade-off between treating these patches all independently
and building a full statistical co-occurrence model, we impose compatibility constraints
only between neighboring patches (Fig. 4.3, left). In particular, we use a Markov Random
Field (MRF) to model spatial interactions, allowing us to compose face template images
without noticeable artifacts.

In our model, the template image T acts as a strong prior for the hallucinated image
H . To simulate the formation of the low-resolution observation L, we model the blur and
downsampling operations by a linear, local-averaging operator [Andrews and Hunt, 1977].
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Figure 4.3: In a Markov Random Field, global properties are obtained through local interac-
tions between neighboring sites. In this work, we encourage those template configurations
where neighboring patches contain similar pixel intensities in their overlapping area. This
results in face template images without noticeable patch artifacts.

4.2.2 Exploiting Time

Just as neighboring pixels in natural images tend to be highly correlated, so too are consec-
utive frames in video sequences. In this chapter, we exploit these temporal dependencies
to further constrain the space of high-resolution solutions. As illustrated in Fig. 4.4 (a), we
model couplings between consecutive frames by extending the MRF framework into the
time dimension. This results in a three-dimensional network of video patches, defined as
data structures spanning multiple consecutive frames. For instance, as shown in Fig. 4.4
(b), we can choose a temporal support of 3 frames for the nodes in T and make consec-
utive nodes overlap by one frame. This is equivalent to stating that the underlying video
sequence is first-order Markov in time.

Our scheme gives the temporal dimension an unconventional role compared to earlier
approaches to super-resolution: in the reconstruction-based resolution enhancement liter-
ature, the relative motion between frames is estimated, then eliminated through warping
or optical flow. Reconstruction-based approaches are essentially two dimensional, treating
time as a nuisance parameter to be compensated for.

The very small size of inputs (6× 6 pixels) considered in this chapter would make the
recovery of facial motions (e.g., the opening and closing of the eyelids and mouth, and
the appearance of pupils and teeth) particularly difficult. Avoiding this motion estimation
problem, we take advantage of the richer local signature that the combination of space
and time provides. Our model captures and reasons about occlusions, appearance of new
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Figure 4.4: (a) We model couplings between consecutive frames by extending the MRF
framework into the time dimension. (b) The space-time patches that constitute the nodes of
the MRF span multiple consecutive frames. To evaluate compatibilities between neighbor-
ing nodes, we compute pixel differences over whole patches of overlapping video frames.

structures, and non-diffeomorphic deformations naturally, in terms of interacting chunks
of high-resolution template videos. As such, we exploit the complex visual phenomena as
spatio-temporal signatures.

Recently, psychological studies have shown that motion helps human face perception
under non-optimal (e.g., viewing blurred or negative images) conditions [Bruce and Valen-
tine, 1988; Pike et al., 1997; Lander et al., 2001]. The “supplemental information hypothe-
sis” [O’Toole et al., 2002] suggests that humans learn motions of familiar faces as dynamic
signatures and exploit them for recognition [Roark et al., 2006]. As the experimental results
will attest, our video hallucination framework mimics this capability.

4.3 Hallucination as a Probabilistic Inference Problem

Now we will formulate the problem of Face Hallucination in videos. Using our graphical
model, we pose the problem as one of finding the Maximum A Posteriori (MAP) high-
resolution video HMAP given the low-resolution video L:

HMAP , arg max
H

P (H | L).
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To express the MAP estimate in terms of known quantities, we first marginalize over the
unknown template video T :

P (H | L) =
∑

T

P (H, T | L).

The discrete summation above is due to the sample-based representation for T . By applying
the chain rule1, the posterior can be expressed as∑

T

P (H | T, L) P (T | L). (4.1)

At this point, we would like to tease out a premise that underlies the entire enterprise of
super-resolution. The very assumption that we can succeed at the task of super-resolution
(i.e., estimate H uniquely and to arbitrary resolution) implies that the underlying distribu-
tion P (T | L) is peaked around the true high-resolution solution. As an approximation, we
assume that this posterior is a delta-function at the true configuration, which we estimate
using the input.

Unique Template Assumption

Assume that the posterior P (T | L) is highly concentrated around some T ∗ = T ∗(L). In
other words,

P (T | L) ≈ δ(T − T ∗). (4.2)

Deferring the computation of T ∗ until section 4.3.1, we substitute (4.2) into (4.1) so that
P (H | L) is approximately

P (H | T ∗, L).

Using Bayes rule, the posterior can be written as

P (L | T ∗, H) P (H | T ∗)

P (L | T ∗)
.

1The chain rule asserts that P (X, Y ) = P (X | Y )P (Y ).
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The graphical model of Fig. 4.2 entails the conditional independence2 P (L | H, T ) =

P (L | H). Capturing the denominator by a constant C, we rewrite the posterior as

C P (L | H) P (H | T ∗). (4.3)

Taking the logarithm of (4.3), HMAP approximately maximizes

log P (L | H) + log P (H | T ∗). (4.4)

Note the trade-off in the computation of HMAP . The first term encourages those H that
increase the likelihood of the reconstructed observation L, while the second term imposes
a data-dependent prior T ∗ on H .

4.3.1 Maximization of the Posterior P (T | L)

Now we describe our method for computing the peak template T ∗ in (4.2) by estimating
the maximum of P (T | L).

Using Bayes rule, we first rewrite this posterior in terms of likelihood and prior terms.
Observing that nodes in L are conditionally independent given the high-resolution template
T , we obtain a factorized likelihood term

P (T | L) ∝ P (L | T ) P (T ) =
N2∏
p=1

P (Lp | Tp) P (T ). (4.5)

Unfortunately, in the case of extremely blurred images, the likelihood term P (Lp | Tp) is
too weak; many templates match with a given Lp. One remedy to this problem is based on
the observation that there are spatial dependencies in the observed data. Thus, by pooling
contextual information about Lp into a local feature vector, one can make the likelihood
term more descriptive. The downside of such an extension is that the factorized form of
(4.5) will no longer be valid. In section 4.3.3, we will present the details of such a feature
vector, and expose our assumptions for achieving a computationally tractable algorithm.

2Two nodes which are not connected by a link are independent when conditioned upon their neighbors.
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Figure 4.5: Each database entry contains an image patch, the neighboring pixels (for en-
forcing consistency), a feature vector (for matching to the low-resolution image), and its
location (for supporting non-homogeneous spatial statistics). This structure is repeated for
all frames within the temporal support of the space-time patch considered.

4.3.2 The Template Prior

We restrict the space of possible T ’s to a domain-specific collection of example templates.
For this end, a database is generated from training data by artificially downsampling high-
resolution images and computing their low-resolution feature images. As shown in Fig. 4.5,
we store these examples patch-wise, in that each record is a quadruple, (tk, nk, fk, sk),
containing high-resolution template patch pixels tk, a thin strip nk of surrounding pixels,
the feature vector fk computed at the corresponding low-resolution pixel, and the location
sk of the template.

The MRF model assigns a probability to each template patch configuration T . Accord-
ing to Hammersley-Clifford theorem, P (T ) is a product

∏
Tp,Tq

φ(Tp, Tq) of compatibility
functions φ(Tp, Tq) over all pairs of neighboring nodes. We define φ using similarity be-
tween pixel values in the overlapping areas of example patches. For spatially neighboring
patches, it is

φs(Tp = tk, Tq = tl) ∝ exp
(
−
∑

u,v ∈ overlap

(
tk(u)− nl(v)

)2 − ∑
u,v ∈ overlap

(
nk(u)− tl(v)

)2)
,

whereas for temporally neighboring patches it is:

φt(Tp = tk, Tq = tl) ∝ exp
(
−

∑
u,v ∈ overlap

(
tk(u)− tl(v)

)2)
.
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Figure 4.6: Interactions involved in determining the peak template T ∗. For illustration
purposes, a 1-dimensional version of the model in Fig. 4.2 is shown (left). After applying
the factorization assumption, the resulting graph structure (right) becomes tractable enough
to apply inference methods such as ICM.

4.3.3 The Feature Vector

To render the likelihood term more descriptive, we use a multiscale feature vector derived
from the low resolution observation L. Following [Baker and Kanade, 2002], we adopt
the parent vector as our feature Fp, which stacks together local intensity, gradient and
Laplacian image values at multiple scales [DeBonet and Viola, 1998]. Fig. 4.6 (left) shows
a 1-dimensional version of Fig. 4.2, with the feature vector nodes added.

Factorization Assumption

Observe that we have two random fields, F and T that are coupled through the low-
resolution image formation model. For computational tractability, we invoke the pseudo-
likelihood approximation [Li, 2001] to assume that P (F | T ) factorizes across feature
image pixels:

P (F | T ) ≈
N2∏
p=1

P (Fp | T ). (4.6)

Correspondingly, the graphical model of Fig. 4.6 (left) is simplified to Fig. 4.6 (right).
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The likelihood P (Fp = fp | Tp = tk) will be defined using the similarity between the
feature vectors fp(L) and fk, where k is an index to database entries. For a spatially-varying
(i.e., inhomogeneous) prior for Tp, we consider a similarity of the form

P (Fp = fp | Tp = tk) ∝

{
exp
(
−‖fp(L)− fk‖2

)
if sk = p,

0 otherwise.

Using the factorized form (4.6), T ∗ is approximately

arg max
T

N2∏
p=1

P (Fp | Tp)
∏
(p,q)

φ(Tp, Tq). (4.7)

Finding the Peak Template T ∗

In Alg. 1, we adopt a greedy approach commonly taken in the field of Bayesian image
estimation: the Iterated Conditional Modes (ICM) method [Besag, 1986]. This algorithm
takes advantage of the Markov structure, and maximizes local conditional probabilities
sequentially.

4.3.4 Hallucinating Face Videos

Now we introduce the details of the likelihood models of image formation and observation.
We show that, once we have computed T ∗, video hallucination (computing HMAP ) only
requires a quadratic minimization.

Likelihood Models

We model the hallucination H as a noisy version of the template T :

H = T + ηH .

The deviation from the template follows a pixel-wise independent additive Gaussian noise
ηH ∼ N(0, diag(σH)):

P (H | T ) =
M2N2∏
h=1

1

σH

√
2π

exp
(
−
(
T (h)−H(h)

)2
2 σH

2

)
.
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input : observation L
output: peak template T ∗

compute the multiscale feature F = F (L)

/* initialize T ∗ with local Maximum Likelihood estimates */
for all video patches p do

T ∗
p ← arg max

tk
P (Fp = fp | Tp = tk)

end

/* choose a video patch, and update it using its neighbors */
repeat

pick a random location p

T ∗
p ← arg max

tk
P (Fp | T ∗

p = tk)
∏

q∈N (p)

φ(T ∗
p = tk, T

∗
q )

until T ∗ converges ;

Algorithm 1: We search for the peak template T ∗ with ICM.

After the high-resolution hallucination H is blurred and downsampled, additive sensor
noise is considered, resulting in our model for the low-resolution observation L:

L = AH + ηL,

where the matrix A is a local averaging operator with N2 rows and M2N2 columns. We
assume a pixel-wise independent noise model for L:

P (L | H) =
N2∏
l=1

1

σL

√
2π

exp
(
−
(
L(l)− (AH)(l)

)2
2 σL

2

)
.

Computing HMAP

Given the likelihood models above, we can evaluate (4.4): HMAP minimizes

‖L− AH‖2 +
σ2

L

σ2
H

‖T ∗ −H‖2. (4.8)
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Individual terms above have intuitive interpretations: the first term encourages those high-
resolution videos H that can reconstruct the observation L. At the same time, the second
term states that H cannot be too different from T ∗. Consequently, HMAP will be a trade-
off between the inferred template T ∗ and the observation. Finally, we observe that (4.8) is
quadratic in the unknown H , and employ a gradient descent scheme for this minimization.

4.4 Experiments

4.4.1 Setup

Training

To build our face template prior, we video-taped a story-telling subject for 10 minutes. The
recording took place indoors, under fixed lighting conditions. In a post-processing step,
we used a translational tracker to stabilize the face position throughout the video. This
yielded a training set with approximately 10,000 high-resolution examples, wherein the
face covered a 96x96 pixel area.

Our training database was designed for a 16-fold increase in resolution; it paired in-
dividual low-resolution pixels (and their feature vectors) with 16x16 pixel-wide high-
resolution template patches. The feature vector was a 15-dimensional measurement (grayscale
intensity, horizontal/vertical/temporal derivatives, and the Laplacian, computed over 3 scales)
for each time instant within the temporal support of the space-time patch. As depicted in
Fig. 4.5, the neighboring pixels came from a 2-pixel wide frame that surrounded each patch.

Testing

As test data, we used approximately 3 second long video sequences of the same subject,
under the same illumination condition as the training data. The translational motion of
the face was eliminated as above. These high-resolution videos were considered to be the
“ground truth” data, and their artificially downsampled low-resolution versions were used
for testing. To account for tracking uncertainty in low-resolution, we first added inde-
pendent and identically-distributed (i.i.d.) translational jitter (zero-mean Gaussian, σ = 1

high-resolution pixel) to test videos before blurring and downsampling them at a resolution
of 6x6 pixels. Finally, we added i.i.d. noise (zero-mean Gaussian, σ = 1 grayscale level)
to low-resolution pixel intensities to simulate sensor characteristics.
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Figure 4.7: We generated and applied independent jitter and additive noise to the same
low-resolution input video for 30 experiments, and compared the hallucinations against the
ground truth. Enforcing spatio-temporal couplings reduces the MSE (left), primarily by
reducing the variance and enhancing the stability of hallucinated videos (right). However,
as temporal couplings become stronger, bias magnitudes also increase (middle).

4.4.2 Quantitative Evaluation

To analyze the role of spatial and temporal couplings, we systematically turned the spatial
and temporal interactions on and off, and varied the temporal support of space-time patches
from one to five frames. At each test configuration we ran 30 hallucination experiments
wherein we jittered, blurred and downsampled, and finally added noise to the same 50-
frame test sequence.

Signal-Level Reconstruction Error

We first report the statistics of the Mean-Squared-Error (MSE) between the hallucinations
and the ground truth. In Fig. 4.7, we plot three curves corresponding to the no-prior, spatial-
only prior, and spatio-temporal prior cases as a function of temporal support in space-time
patches. In a horizontal arrangement, we decompose the MSE (left) into its squared-bias
(middle) and variance (right) components [Casella and Berger, 1990]. For summary, we
average these metrics spatially and temporally over the entire video sequence.
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Fig. 4.7 shows that imposing priors onto the hallucination problem significantly reduces
the MSE. Modeling the spatial couplings between face patches reduces the error, and ex-
tending such interactions into the temporal domain pushes the error levels even lower. The
improvement can be visually confirmed in sample hallucination videos3.

The Bias-Variance decomposition of the MSE reveals that temporal models dramati-
cally reduce the variance of hallucinations, but not so much their bias magnitude. How-
ever, as the temporal support (hence the dimensionality) of the representation gets larger,
the bias slightly increases (Fig. 4.7, middle). Since the size of our training set is fixed, such
overfitting effects are to be expected.

Although the MSE is a physically meaningful metric for signal reconstruction, it does
not necessarily reflect perceived visual quality by humans [Girod, 1993]. The design of
objective image/video quality metrics that mimic the sensitivities of the the Human Visual
System (HVS) is an active research area [Winkler, 1999; Pappas and Safranek, 2000]. In
the following, we present additional quantitative evaluations based on perceptual metrics.

Structural Similarity Index

Humans are highly adapted to extract the structural information of a scene despite illumi-
nation effects. This observation motivated the Structural Similarity (SSIM) Index that aims
to primarily measure the structural changes between a reference image and its distorted
version [Wang et al., 2004]. The mean SSIM is a scalar that summarizes the effects of local
luminance, contrast and correlation distortions between two images, and has been shown
to be a competitive predictor of perceived quality by humans.

We computed the mean SSIM4 quality measure between our hallucinations and the
ground truth videos. In Fig. 4.8 (left), we plot three SSIM curves as we did for the MSE
values in Fig. 4.7. Note that a larger SSIM score means a higher similarity to the ground
truth, hence better hallucination quality. We observe that the relative performance among
experimental settings are in agreement between the MSE and SSIM measures: capturing
the spatial interdependencies between face patches reduces the error, and extending the
model into the temporal domain pushes the error levels even lower.

3Videos are available at http://www.cs.cmu.edu/˜dedeoglu/thesis
4Code from http://www.cns.nyu.edu/˜lcv/ssim/ was used with default parameters.
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Figure 4.8: In addition to the MSE, we used objective image quality metrics to measure
the perceptual similarity between the hallucinated and the ground truth videos. Both the
Structural Similarity (left) and the Visual Information Fidelity (right) measures agree with
the MSE results of Fig. 4.7: spatial and spatio-temporal priors improve hallucinations.

Visual Information Fidelity

The Visual Information Fidelity (VIF) is an information-theoretic similarity measure that
makes use of natural scene statistics [Sheikh and Bovik, 2006]. If the information content
of an image is defined as the mutual information between the input and output of the HVS
channel, then the VIF measure between two images is their relative image information. In
Fig. 4.8 (right), we plot the mean VIF5 similarity curves between the hallucinated and the
ground truth videos. Note the similarity between the SSIM and VIF curves.

Temporal Derivatives

The MSE, SSIM and VIF average over the temporal dimension of videos. In our subjective
experience, we found temporal priors to be very effective in reducing disturbing flicker
artifacts in hallucinations. To capture this effect, we measured frame-to-frame differences
between consecutive time instants (i.e., temporal derivatives) in hallucinated videos, and
investigated how well they matched those of the ground truth. Fig. 4.9 shows the temporal

5Code from http://live.ece.utexas.edu/research/Quality/VIF.htm was used with default parameters.
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Figure 4.9: To analyze the observed reduction in video flicker artifacts, we compared the
temporal derivatives of our hallucinations with those of the ground truth. Temporal cou-
plings dramatically reduce mismatches in temporal derivatives of hallucinations.

derivative MSE curves, organized in the same fashion as the reconstruction MSE curves
of Fig. 4.7. In agreement with our perceptual assessment, we observe a reduction in error
magnitudes due to spatial couplings, but significantly more so due to temporal ones.

In Fig. 4.10, we plot the temporal derivative MSE as a function of time for the case
of 2-frame temporal support. Note that the errors for the no-prior and spatial-only-prior
cases are consistently higher compared to the spatio-temporal-prior case. The peaks ob-
served around frames 4 and 13 are due to a smile and blinking eyes, whose exact timing is
challenging to replicate in hallucination.

4.4.3 Qualitative Results

In Fig. 4.11, we visually compare the hallucination results for selected test frames. The
first column shows the 6x6 pixel input, whereas the last column shows the underlying
96x96 pixel ground truth. The columns in between compare the hallucinations among
three different configurations of the model: no prior, spatial-only prior and spatio-temporal
prior, all using 2 frames of temporal support.
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Figure 4.10: Plotting the temporal derivative MSE as a function of time can be revealing:
the peaks observed around frames 4 and 13 are due to a smile and blinking eyes, whose
exact timing is challenging to replicate in hallucination.

Spatial Interaction

The second column of Fig. 4.11 shows hallucinations with no interaction among the tem-
plate patches. In other words, each patch in each frame is hallucinated independently using
the local Maximum Likelihood template estimate. We observe that the results display many
blocking artifacts and extraneous edges.

In the third column of Fig. 4.11, we enforce the interactions in space but ignore those
in time. In other words, we estimate each frame independently and hallucinate frame-wise.
Note that many of the blocking artifacts have disappeared, but unfortunately, hallucinations
now contain some incorrect estimates of the underlying facial expressions (e.g., closed vs.
open eyelid and mouth).

Spatio-Temporal Interaction

The fourth column of Fig. 4.11 shows hallucinations with full spatio-temporal couplings.
Note that facial expressions are recovered more accurately when temporal interactions are
allowed (compare the opening of eyelid and mouth with spatial-only hallucinations).

As static images, the results in Fig. 4.11 already exhibit considerable improvements
due to both spatial-only and spatio-temporal modeling of the problem. We find our results
as video sequences to be even more compelling: frame-to-frame transitions that are not
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directly observable in static images can have perceptually detrimental effects when seen
as a time sequence. We observe that such flicker artifacts, amply present in frame-wise
hallucinations, vanish by a large extent when temporal couplings are taken into account
(i.e., when two or more frames of temporal support are used). These observations confirm
that time plays a crucial role as a regularizer in our inference6.

4.5 Discussion

4.5.1 The Global Tracking Assumption

The AAM-based hallucination approach of Chapter 3 tracked low-resolution faces by esti-
mating a similarity transformation and non-rigid deformation parameters. However, below
a certain resolution, parametric tracking suffers from numerical singularities and becomes
impractical. For instance, one cannot fit a 50+ parameter AAM to a 6x6=36 pixel image.
One option is to solve for a subset of parameters such as translation. While this approach
might be able to track the face, hallucination would not be possible unless the full set of
face parameters are estimated accurately.

Tracking in low-resolution can be a challenge. Yet, the difficulties of tracking do not
have to hinder hallucination as it does for an AAM. In this chapter, our strategy was to
decompose the problem into its tracking and resolution enhancement components: we as-
sumed that the low-resolution face was roughly tracked (i.e., “boxed” in the 6x6 input
window) and focused on the hallucination problem. We treated the tracking errors within
this window as noise, and relied on the smoothing effect of the MRF to overcome its effects.

4.5.2 Estimating the Local Jitter Motion

A promising direction for development is to refine the tracking of low-resolution faces.
This could be achieved by augmenting the generative model of Fig. 4.2 with a jitter motion

variable that would geometrically perturb the (high-resolution) template images before they
get blurred and downsampled. As such, the inference algorithm would be jointly solving
for three variables: the template, illumination mismatch, and jitter motion. While compu-
tationally more expensive, this extension has the potential to reduce the sub-pixel tracking

6Videos are available at http://www.cs.cmu.edu/˜dedeoglu/thesis
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Figure 4.11: Time plays a regularizing role in video hallucination (see Section 4.4.3).
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background, 75%

Figure 4.12: For a realistic representation of the unknown background problem, we col-
lected our training and testing videos against a dynamically varying background. We video-
taped the subject in a seminar room where a movie was projected behind the subject.

errors that are currently ignored as noise. Eliminating this noise would result in an overall
improvement in hallucination.

4.5.3 Background Effects

One of the disadvantages of assuming a fixed-size face window is that one cannot reason
precisely about the background: if the 6x6 window is not fully occupied by a face, some
edge pixels will contain unmodeled hair, ear and background scene intensities. Indeed, this
“background contamination” gets only worse with multiscale features whose span reach
even farther away from the face. Note that, if the same background is used for both training
and testing, this problem might never be noticed.

In our video model, we did not attempt to reject low-resolution pixels (or their associ-
ated features) on the grounds of background effects. Instead, we regarded the variability of
the background as a nuisance, and dealt with it as an additional source of noise. To make
our training and testing conditions realistic, we collected all our data against a dynamic
background: we video-taped the subject in a seminar room where we projected a movie
onto a screen behind the subject. Fig. 4.12 shows selected full-frames from our data set.
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4.5.4 Exploring the Posterior P (T | L)

Under our “unique template” assumption, we only sought for the peak of the posterior
distribution P (T | L). An interesting area for future research would be to explore this
posterior through Monte-Carlo Markov Chain sampling techniques. This might reveal,
at the price of increased computation, interesting properties of the hallucination problem
at hand. For instance, we might find out that the posterior is multimodal, indicating an
ambiguity in our inference. In addition, the mean or the mode of the posterior might prove
to be more robust solutions than the peak.

4.5.5 Hallucinating Template T ∗ vs. HMAP

The video hallucination algorithm prescribes first finding the peak template T ∗ (and the
associated illumination mismatch I∗), and then solving the quadratic minimization problem
of (5.2) to compute the hallucination HMAP . One might wonder how necessary the second
step is: could one directly hallucinate the peak template T ∗ ?

First, observe that the generative template model may not be general or precise enough
to synthesize some of the observed faces. When the template cannot account for the low-
resolution observation exactly, H∗ settles for a trade-off. As such, H effectively acts as a
smoother that masks the imperfections in T .

For comparison, we quantified the reconstruction errors incurred by the peak template
T ∗ and hallucination HMAP . The curves shown in Fig. 4.13 were obtained through the
experiments detailed in Section 4.4.2, where both spatial and temporal couplings were
used. The MSE measurements (left) indicate a slight advantage (i.e., smaller error) in favor
of HMAP . Decomposing the MSE into its squared bias and variance components reveals
that HMAP has indeed a larger bias magnitude compared to T ∗ (middle). In other words, on

average, hallucinating T ∗ actually gives a more accurate reconstruction. Nevertheless, the
variance of T ∗ is higher by an even wider margin (right). These results confirm smoothing
effect of HMAP over T ∗, which is a desirable property.

Finally, recall that the template is a data-driven, appearance-based face model. While
it can compose a variety of faces by combining examples it has seen before, it nevertheless
cannot generalize to novel images (or videos) below the granularity of its patches. In con-
trast, the hallucination variable H can benefit from additional priors such as smoothness,
gradient distributions, or even simulated lighting effects. H could also accumulate evidence
about the underlying scene as done in conventional, reconstruction-based enhancement.
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Figure 4.13: We compared the hallucination errors incurred by the peak template T ∗ and
the hallucination HMAP . The latter exhibits slightly lower error levels (left), solely due to
its smaller variance (right). These results confirm the smoothing effect of HMAP over T ∗.

4.5.6 Sensitivity to Point Spread Function

As an inverse problem, resolution enhancement is highly sensitive to image formation
models such as the point spread function (PSF) of the camera [Stark, 1987; Banham and
Katsaggelos, 1997]. In Section 4.4, the template training database paired high-resolution
space-time patches with their 16-fold resolution degraded versions. In both training and
testing, low-resolution data was simulated with a pillbox PSF that was 16x16 pixels wide.
In other words, perfect knowledge of the PSF was assumed.

How much would the hallucination performance degrade with an imperfect PSF? To
find out, we ran experiments wherein we kept the training PSF intact but modified the PSF
of the test data. As in Section 4.4.2, we used a 50-frame test sequence and ran 30 halluci-
nation experiments under translational jitter and additive noise conditions. We hallucinated
using the best-known model configuration: space-time patches had a temporal support of
2-frames and the full spatio-temporal interactions were enabled during the inference.

In Fig. 4.14, we plot the average reconstruction MSE as a function of the PSF width,
taking integer values from 14 to 18 pixels. As expected, the MSE is lowest when the PSF is
characterized accurately as 16 pixels wide. With a PSF mismatch, the reconstruction per-
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Figure 4.14: To find out how the hallucination performance degrades under an imperfect
PSF, we ran experiments wherein we modified the PSF of the test data. We plot the average
reconstruction MSE as a function of the PSF-width, for integer values from 14 to 18 pixels.
The MSE is lowest when the PSF is characterized accurately as 16 pixels wide. Under a
mismatch, the reconstruction performance degrades quickly.

formance degrades quickly: when the test PSF is 14 pixels wide, the relative degradation is
comparable to the case where we had ignored the temporal couplings between the patches.
The curve of the bias magnitude confirms that the underlying problem is one of inaccurate
modeling.

4.5.7 Face-Specific Design

As mentioned in Section 4.1, our graphical model and its specialization to human faces
were inspired by the earlier works of [Freeman et al., 2000] and [Baker and Kanade, 2002].
We now revisit some of these design choices and propose alternatives that may further
exploit the human face domain.

Graphical Model Topology

Currently, our MRF is defined on a regular 3-dimensional lattice, and clique potentials of
order three and higher and assumed to be zero. The connectivity of each node in the model
is limited to its 6 neighbors: 4 spatial and 2 temporal. Although theoretically this structure
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Figure 4.15: We show intensity-mapped estimates of the mutual information between a se-
lected low-resolution pixel (marked with a×) and all others. While there is some degree of
mutual dependency between immediately neighboring pixels, much stronger dependencies
usually exist between the left and right half pixels of faces.

can already express global statistical properties, one may expect a different connectivity to
be better suited to this particular domain. Patches could be defined according to facial fea-
tures, e.g., as to cover the eyebrows and the mouth completely instead of breaking them into
fixed-size patches. Furthermore, the underlying symmetry of faces could be used explicitly,
by connecting left-right side pixels and imposing additional interaction constraints.

Feature Selection for Contextual Information

In Section 4.3.3, we adopted the multiscale “parent” feature vector of [DeBonet and Viola,
1998] in an attempt to pool contextual information about a low-resolution pixel. However,
the face domain exhibits a lot more structure and regularity than generic textures, for which
this feature vector was originally designed. One could expect features derived from the face
domain to be more powerful in pooling relevant information. One commonly used measure
of the relevancy between variables is mutual information [Cover and Thomas, 1991]. To
give an intuition on this, as done by [Schneiderman and Kanade, 2004], we measured and
displayed mutual information between low-resolution pixels in Fig. 4.15.

We observe that, while there is usually some degree of mutual dependency between
immediately neighboring pixels, much stronger dependencies usually exist between the
left and right half pixels of faces. As an extension, one could develop a feature selection
framework for designing more effective contextual pooling mechanisms.
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4.6 Conclusion

This chapter demonstrated that Face Hallucination can benefit from the spatio-temporal
dynamics of faces. To investigate the role of time, we first devised a novel generative
model of face videos. This model treated a video as a composition of space-time patches
and encoded visual phenomena in a non-parametric, example-based fashion. The patch-
based representation was also used to define a prior in both space and time.

We ran extensive hallucination experiments and quantified the effect of spatial and tem-
poral models on the hallucination performance. Our results highlighted the importance of
a video’s temporal dimension in hallucinating facial expressions correctly.





Chapter 5

Accounting for Changes in Illumination

Images of a face under different lighting conditions exhibit large intensity variations, which
pose a serious modeling challenge [Adini et al., 1997]. Since the data-driven template
model of Chapter 4 can only compose face videos under the training lighting conditions, it
is brittle against illumination variation. Fig. 5.1 illustrates a failure case, where the halluci-
nation does not resemble the ground truth. Observing that it would be impractical to repli-
cate the template database for all possible lighting configurations, we propose a method
to reason about the illumination effects explicitly. We develop an approximate compensa-
tion scheme against lighting conditions and demonstrate Face Hallucinations beyond the
lighting conditions of the training examples.

illumination 
modeled

 96x96

illumination
ignored

 96x96

susan_example_failure

high-resolution
ground truth

 96x96

1/16 
input

 6x6

Face Hallucination

Figure 5.1: Since the data-driven template model of Chapter 4 can only compose face
videos under the training lighting conditions, it is brittle against illumination variation. A
failure case is shown, where the hallucinated face does not resemble the ground truth. By
explicitly modeling the illumination effects and compensating for them, our system will be
able to hallucinate more accurately.
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Figure 5.2: We treat illumination as a nuisance parameter and compensate for it. Observed
faces are brought to the lighting condition of the face model before the fitting process. This
allows the model training to focus on facial expressions rather than illumination artifacts.

We treat illumination as a nuisance parameter. Our strategy is to compute a point es-
timate of this variable and to eliminate its effect in input videos. Fig. 5.2 illustrates how
the observed faces are brought to the (training) lighting condition of the model before the
fitting process. Independent of the observed illumination, our algorithm hallucinates faces
in the reference illumination of the training data. This allows our template training to focus
on facial expressions rather than lighting artifacts.

5.1 Explaining the Illumination Effects

Assume that T is the perfect template image, i.e., it is the high-resolution version of the
observed face L. Thus, any difference between the simulated low-resolution template AT

and the observation L must be purely an illumination artifact. This is illustrated in Fig. 5.3,
where the “illumination mismatch” term I is a vector that captures the difference between
the training and testing lighting conditions. Conversely, subtracting I from L brings the
observation into the lighting of the training set, i.e., compensates for illumination.

In practice, one has to estimate both T and I , a non-trivial joint optimization problem.
Observe that the mismatch term I has to be constrained; otherwise the observed L could
be arbitrarily matched to any template AT . In the following, we propose a constraint for I .
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Assuming P (I, T |L) ≈ δ(I − I∗, T − T ∗), the posterior can be written as
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2 Illumination Cones

RN2

An illumination cone characterizes the space of all images of a static, convex and
Lambertian object under varying illumination conditions. Observing that the human
face is approximately convex, we denote by C (p, e) the cone of images induced by
an individual’s face with pose p and expression e.

L(p, e) is a face image taken under pose p and expression e.
Lref (p, e) is the face image obtained under reference illumination conditions.

!C
(
L(p, e)

)
= Lref (p, e)−L(p, e) is the illumination compensation vector that will

bring L(p, e) to the reference illumination condition.

We approximate C (p, e) with a low-dimensional subspace computed via SVD. Let
Bj(p, e) (where j = 1, 2, ..D) denote its orthonormal basis functions.

L(p, e) ≈ proj
(
L(p, e); C (p, e)

)
=

D∑
j=1

< L(p, e), Bj(p, e) > Bj(p, e)

!C
(
L(p, e)

) ≈ proj
(
Lref (p, e)− L(p, e); C (p, e)

)
=

D∑
j=1

< Lref (p, e)− L(p, e), Bj(p, e) > Bj(p, e)

Imagine we are given a new image of the same person L(p′, e′), obtained under
a different pose p′ and expression e′. In order to bring L(p′, e′) to the reference
illumination condition, we would need to know C (p′, e′). How could we proceed in
the absence of this information? In the following, we propose an approximation, and
demonstrate that it has acceptable error levels.

!C

4

Figure 5.3: We regularize the “illumination mismatch” variable I with a subspace. The
constrained estimate, denoted by Ĩ , is computed between the projections of observed (L)
and simulated (AT ) low-resolution images onto a given illumination subspace.

An Approximate Regularization

Prior work showed that the set of face images obtained by varying the lighting lied in a low-
dimensional subspace [Shashua, 1992; Hallinan, 1994; Belhumeur and Kriegman, 1998;
Yuille et al., 1999; Basri and Jacobs, 2003]. One can use Singular Value Decomposition to
compute a linear (illumination) basis for this subspace from just a few images.

Can we regularize the mismatch term I with an illumination subspace? Note a key
restriction here: subspace models only hold for rigid and static objects. This assumption is
constantly violated in Face Hallucination due to natural head motion and facial expressions.
Unfortunately, learning an illumination subspace for each and every pose/expression con-
figuration would not be practical. Even if one could build such an array of models, index-
ing the correct subspace would still require perfectly recognizing the facial pose/expression
from low-resolution videos, which constitutes the inference sub-problem of Face Halluci-
nation.

Given the difficulty above, we resort to an approximation that ignores the variations in
pose and expression. As shown in Fig. 5.3, we choose the constrained Ĩ to be the differ-
ence vector between the projections of AT and L onto a given illumination subspace (e.g.,
built for a face with a neutral expression). Since this operation transfers the illumination
mismatch vector Ĩ to a new point in the space of low-resolution images, the approximated
compensation incurs a “transfer error” = I − Ĩ .
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How valid is the above approximation? In the following section, we quantify the trans-
fer errors among four exemplar subspaces of a subject, and observe that the relative error
magnitudes (with respect to the ground truth I) are acceptably small in low-resolution.
The results suggest that, in low-resolution, distinct illumination subspaces of a face —each
coming from a different pose and expression— still exhibit similar variation with respect
to illumination. The approximate illumination compensation algorithm of Section 5.3 will
exploit this structure.

5.2 Quantifying Approximation Errors due to
Mismatch of Illumination Subspaces

We proposed a method for compensating low-resolution face images against illumination
effects. This involved an approximation when the pose/expression of the observed face did
not exactly match that of the assumed illumination subspace. We now present empirical
evidence about the magnitude of the approximation errors.

5.2.1 Experimental Setup

For a quantitative analysis, we performed experiments wherein we artificially generated a
large number of approximation instances. We applied our approximate method and com-
pared the results against ground truth, where no approximation was necessary. To inves-
tigate the role of image resolution, we repeated all procedures for both high-resolution
(96x96 pixels) and low-resolution (6x6 pixels) faces.

As a representative set of pose/expression mismatches, we used four different facial
expressions (neutral, smiling, frowning, and angry) with small pose perturbations. At each
of these configurations, we captured a few hundred images under varying illumination.
Within each set we randomly selected six images, shown in Fig. 5.4, to characterize the
illumination subspace through SVD.

5.2.2 Generating Approximation Instances

Our setup with four illumination subspaces is illustrated in Fig. 5.5. The point clusters
overlaid on subspaces represent the face images collected for the corresponding pose and
expression. Note that the spread within each cluster is due to lighting variation only.
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illumination_transfer_training

frowning

smiling

neutral

varying illumination

angry

Figure 5.4: We built four illumination subspaces corresponding to the neutral, smiling,
frowning and angry expressions with small pose perturbations. Each row shows the training
images used to compute the linear basis for the corresponding subspace.

We define the following “illumination problem”: we declare the mean of each cluster
to represent the reference lighting condition and we use the compensation method to nor-
malize each image. In other words, we try to bring every point to the mean of its cluster.
Recall that the compensation method exploits a subspace, assumed to be known a priori,
in regularizing the illumination mismatch variable I . When the observed pose/expression
does not exactly match this model, the method is only approximate and incurs a transfer
error.

To get a representative sampling of the transfer error, we apply our algorithm to all
available images, using each of the learnt subspaces. This results in a 4x4 matrix of
pose/expression (mis)matches. The diagonal of this matrix corresponds to cases where the
subspace is exact, i.e., there is no transfer error. Off-diagonal cases are those with a sub-
space mismatch: for instance, when neutral face image is compensated with the subspace
constraint of a smiling face, there will be a non-zero transfer error, i.e., I 6= Ĩ .
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Figure 5.5: Our illumination compensation method incurs a “transfer error” whenever the
pose/expression of the observed face does not exactly match that of the assumed illumina-
tion subspace. To quantify these errors, we artificially generate problem instances where
we apply our method and compare the results against ground truth.

5.2.3 Quantitative Evaluation

Without a reference point, the magnitude of a transfer error is difficult to interpret. A more
intuitive measure is the relative magnitude of the transfer error I − Ĩ with respect to the
ground truth compensation vector I:

% relative error =
‖I − Ĩ‖2

‖I‖2
× 100.

In Fig. 5.6, we report the mean value of this metric for the off-diagonal entries of the
mismatch matrix. We observe that, in low-resolution, the relative error magnitudes remain
acceptably small. These results suggest that distinct illumination subspaces of a face —
each coming from a different pose and expression— still exhibit similar variation with
respect to illumination. Our approximate illumination compensation exploits this structure.
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Figure 5.6: In low-resolution, the relative transfer error magnitudes remain acceptably
small. This suggests that distinct illumination subspaces of a face exhibit similar varia-
tion with respect to illumination.
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Figure 5.7: We augment the graphical model of Fig. 4.2 with the “illumination mis-
match” variable I that can explain the difference between the simulated and observed low-
resolution images as a lighting effect. Observe that the facial expression component T and
the illumination component I of this model are tightly coupled through the observation L.

5.3 Augmenting the Graphical Model

We augment the graphical model of Fig. 4.2 with a global (per image) illumination mis-
match variable I for each frame of the video. As before, the high-resolution template T

acts as prior on the hallucination H , which is blurred and downsampled to simulate the for-
mation of the low-resolution image L. The novelty is that the model can now explain the
difference between the simulated and observed low-resolution images as a lighting effect.
The facial expression component T and the illumination component I are tightly coupled
through the observation L.

Inference

Preserving the probabilistic formulation of the video hallucination problem, we marginalize
over both the unknown template T and the illumination I:

P (H | L) =
∑

I

∑
T

P (H, I, T | L).
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Following the derivation presented in Section 4.3, we rewrite the posterior as

∑
I

∑
T

P (H | I, T, L) P (I, T | L). (5.1)

As we approximate the joint posterior P (I, T | L) in (5.1) with a delta-function at (I∗, T ∗),
finding HMAP turns into the quadratic minimization problem of

‖L− I∗ − AH‖2 +
σ2

L

σ2
H

‖T ∗ −H‖2. (5.2)

Just as in (4.8), the first term encourages those high-resolution videos H that best recon-

struct the observation L, this time up to an illumination mismatch I∗.

An Iterative Algorithm

We take an iterative approach to find the maximizer of the posterior P (I, T | L). To start,
we assume there is no illumination mismatch between the training and testing conditions,
and we choose the template to be the average of all examples in the database. We solve for
I∗ and T ∗ iteratively using Alg. 2, which typically converges after 5 iterations.

Regularizing the Illumination Mismatch I∗

We regularize the estimate I∗ with a low-dimensional illumination (image) subspace built
for the subject in the template database. In Alg. 3, the orthogonal basis images of this
subspace are denoted by Bb, and the notation < ·, ·> stands for the inner-product. We
project each frame of the input and simulated low-resolution peak template videos (denoted
by Lf and AT ∗

f , respectively) onto the given subspace. The regularized illumination term
is the difference between these projections.

5.4 Qualitative Results

To characterize the illumination subspace, we asked the subject to maintain a neutral face
while we captured 6 more snapshots, this time with lighting variation. We blurred and
downsampled these images to 6x6 pixels, ran SVD analysis, and adopted the first two
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input : observed video L
output: illumination mismatch I∗, peak template T ∗

/* initialize I∗ with zero (no mismatch) */

I∗ ← 0

/* initialize T ∗ with the mean of the database (with D entries) */

for all video patch locations p do

T ∗
p ←

1

D

∑
k

tk such that sk = p

end

repeat
given T ∗, solve for I∗ /* see Alg. 3 */
given I∗, solve for T ∗ /* see Alg. 1 */

until convergence ;

Algorithm 2: We solve for I∗ and T ∗ iteratively.

input : observed video L, peak template T ∗

output: illumination mismatch I∗

for all video frames f do

I∗f ←
2∑

b=1

<Bb, Lf > Bb︸ ︷︷ ︸
subspace projection of Lf

−
2∑

b=1

<Bb, AT ∗
f > Bb︸ ︷︷ ︸

subspace projection of AT ∗
f

end

Algorithm 3: For regularization purposes, we compute I∗ in a low-
dimensional illumination subspace.
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basis vectors for our subspace representation. With two illumination coefficients, our model
captured more than 50% of the overall variation within the subspace.

To test our algorithm under novel illumination conditions, we recorded videos under
dynamically varying lighting, obtained by swinging a diffuse light source in front of the
subject. Recall that our model treats illumination as a nuisance parameter and halluci-
nates faces in the same illumination condition as in the training set. This complicates the
quantitative evaluation of hallucinations under novel lighting conditions: even if a facial
expression is recovered correctly, the hallucinated pixel intensities can be very different
from those of the ground truth. In such cases, signal-level reconstruction metrics such as
the MSE would not reflect the accuracy of the recovered faces. For this reason, we only
show hallucination snapshots for a qualitative assessment1.

In Fig. 5.8, we visually compare hallucination results for selected test frames. For
brevity, we only include hallucination results with the full spatio-temporal interactions en-
abled, since this yields the most accurate results. The first column shows the 6x6 pixel
input, whereas the last column shows the underlying 96x96 pixel ground truth. Observe
how the images of this test are, in general, brighter than those shown in Fig. 4.11.

In the second column of Fig. 5.8, we ignore the lighting effects and attempt to halluci-
nate without illumination compensation. Since our data-driven template model and feature
vectors largely depend on pixel intensities, the illumination mismatch leads to total fail-
ure: in addition to exhibiting blocking artifacts, the hallucinated face does not replicate the
behavior of the ground truth face.

As we enable our method’s lighting compensation mechanism, we recover the illumina-
tion mismatch images of the third column of Fig. 5.8. We plot this variable as a 3D surface
over the 6x6 low-resolution pixel grid. The slant of this surface suggests that one side
of the face received more light than the other. This can be visually confirmed in the low-
resolution images: scanning the pixels from left to right, faces indeed get brighter. When
our algorithm adjusted the observed video for illumination, it inferred the hallucinations
shown in the fourth column. Notice the dramatic improvement in the hallucination quality:
the mouth and eye motions are recovered successfully.

1Videos are available at http://www.cs.cmu.edu/˜dedeoglu/thesis
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Figure 5.8: Hallucination benefits from illumination compensation (see Section 5.4).
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5.5 Multiple and Mixed Illumination Subspaces

For lighting compensation, we exploited the illumination subspace of the subject’s face
under a neutral expression. Consequently, the compensation vector is exact for only one
pose/expression configuration; otherwise it is an approximation. An immediate extension
of this approach would be to build a set of illumination models for a sampling of pose and
expressions, and to adaptively switch from one to another.

One might also consider a single but mixed illumination model that would blend various
pose and expressions. Observe that this would not model an illumination subspace per
se; instead it would capture a general appearance subspace with significant illumination
variation. The fundamental problem with this approach would be the competition between
the template and the (mixed) illumination components to explain facial expressions. If part
of the expression signal is interpreted as illumination artifact and removed from the data,
the template model would not be able to recover the underlying expression. Thus, it is
desirable to limit the expressive power of the illumination component with lighting effects.

5.6 Conclusion

We proposed an approximate compensation scheme against lighting conditions. Our ap-
proach was motivated by the observation that, in low-resolution, distinct pose/expression
illumination subspaces of a face exhibited similar variation with respect to illumination. To
exploit this structure, we augmented the video model of Chapter 4 with a low-dimensional
illumination subspace and solved for its parameters jointly with high-resolution face de-
tails. This allowed Face Hallucinations beyond the lighting conditions of the training ex-
amples.





Chapter 6

Conclusion

This thesis aimed to recover and to reconstruct subtle signals in degraded images and
videos. In particular, we proposed models and inference algorithms to analyze low-resolution
videos of human faces. We have demonstrated that a careful exploitation of space (image)
and space-time (video) models could yield effective solutions to the problem of face reso-
lution enhancement, or Face “Hallucination”.

6.1 Summary of Achievements

Throughout this thesis, we demonstrated accurate restoration of facial details, with person-
specific resolution enhancements up to a scaling factor of 16. To highlight the achievements
of the proposed algorithms, we include a selection of hallucination examples.

6.1.1 Exploiting an Image Model

Chapter 3 demonstrated the importance of carefully crafted metrics and algorithms in meet-
ing the challenges of resolution degradation in Face Hallucination. The key observation
was a resolution-induced asymmetry in model-to-image or image-to-image registration
problems: under relative scaling, one must start with the higher-resolution image (or model)
and warp it onto the lower-resolution one while incorporating a blur-formation process in
the fitting criterion.

We showed that the asymmetry principle is most relevant to Face Hallucination. We
adopted the popular AAM as a face model, and showed how the traditional AAM fitting

97
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Figure 6.1: Our novel AAM fitting formulation yielded significantly more accurate recon-
structions of facial details (middle). State-of-the-art algorithms (bottom) that relied on the
traditional formulation were shown to exhibit a systematic bias.

formulation overlooked the asymmetry issue. This caused the fitting accuracy to degrade
quickly when the observed faces were smaller than their model. We then formulated a
novel fitting criterion that respected the asymmetry, and derived a numerical optimization
method for it.

We compared the proposed algorithm against a state-of-the-art method across a variety
of resolutions and AAM complexity levels. For a quantitative analysis, we first defined
accuracy metrics based on the shape and appearance of parameters of AAMs. We then
compared and contrasted the algorithms on various AAMs (both single- and multiperson)
across a range of input resolutions. As shown in Fig. 6.1, our novel fitting algorithm (mid-
dle) proved to be significantly more accurate in estimating and reconstructing faces.

6.1.2 Exploiting a Video Model

Chapter 4 demonstrated that Face Hallucination can benefit from the spatio-temporal dy-
namics of faces. To investigate the role of time, we first devised a novel generative model
of face videos. This model treated a video as a composition of space-time patches and
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Figure 6.2: Exploiting the spatio-temporal dynamics of faces, our video hallucination al-
gorithm (bottom) reconstructed facial expressions that closely resembled the ground truth
(middle). Quantitative experiments revealed the smoothing role of temporal dynamics in
overcoming 16-fold resolution degradations.

encoded visual phenomena in a non-parametric, example-based fashion. The patch-based
representation was also used to define a prior in both space and time.

We ran extensive hallucination experiments and quantified the effect of spatial and tem-
poral models on the hallucination performance. Using both signal reconstruction and ob-
jective visual quality metrics, we demonstrated the smoothing role of temporal dynamics
in Face Hallucination. As illustrated in Fig. 6.2, our algorithm produced high-resolution
expressions (bottom) that closely resembled the ground truth (middle). Our results high-
lighted the importance of a video’s temporal dimension in hallucinating facial expressions
correctly.

Chapter 5 proposed a compensation scheme against illumination. This involved aug-
menting the video model of Chapter 4 with a low-dimensional illumination subspace. Illu-
mination was treated as a nuisance parameter: its effects were estimated and then removed
from observed videos. The proposed algorithm permitted Face hallucinations beyond the
lighting conditions of the training videos.
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6.2 Contributions

The contributions of this thesis can be summarized as follows:

• It has demonstrated that Face Hallucination critically depends on model-fitting met-
rics: a resolution-induced bias was shown to affect most model-to-image and image-
to-image fitting algorithms operating on low-resolution images. It was found that
models and observations should be treated asymmetrically both to formulate an unbi-
ased objective function and to derive an accurate optimization algorithm. The analy-
sis underlined the inherent trade-off between computational efficiency and estimation
accuracy in low-resolution regimes.

• It has proposed a model-fitting algorithm that respected the above-mentioned asym-
metry: it adopted the popular Active Appearance Model and derived a novel Face
Hallucination and tracking algorithm that proved significantly more accurate than
state-of-the-art methods in low-resolution.

• It has demonstrated how Face Hallucination could benefit from facial dynamics:
a statistical generative model of face videos was proposed to represent and reason
about facial expressions. This model treated videos as compositions of space-time
patches, efficiently capturing complex visual phenomena such as eye-blinks and the
occlusion or appearance of teeth.

• It has exploited the space-time representation to define a data-driven face prior on a
3-dimensional Markov Random Field. It posed Face Hallucination as a probabilistic
inference problem and demonstrated the crucial role of a video’s temporal dimension
in hallucinating the correct facial behaviors.

• It has proposed an approximate compensation scheme against illumination variation.
It augmented the generative video model with a low-dimensional illumination sub-
space, whose parameters were estimated jointly with high-resolution face details.
This made Face Hallucinations beyond the lighting conditions of the training videos
possible.

• It has achieved person-specific resolution enhancements up to a scaling factor of 16.
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6.3 Limitations and Future Directions
Chapters 3 and 4 have already discussed specific aspects of the proposed image- and video-
based approaches to Face Hallucination. To conclude, we comment on some of the limita-
tions and identify directions for future investigation.

6.3.1 Hallucinating Familiar vs. Unfamiliar Subjects

Could we hallucinate the faces of subjects we have never seen before? This was the ques-
tion addressed in the seminal work of [Baker and Kanade, 2002] and the answer was shown
to be positive. Similar results can be found in the recent work of [Liu et al., 2007]. In con-
trast to the 16-fold subject-specific resolution enhancements of this thesis, hallucination for
generic faces could only be reliably demonstrated up to a scaling factor of 4. This dif-
ference in performance is not surprising, since the construction and fitting of generic face
models is substantially more difficult compared to person- or group-specific ones [Gross
et al., 2005].

In this thesis, we assumed that we could learn a model a priori for the subjects whose
faces we would be hallucinating. In a practical surveillance scenario, such models could
be built for tracking, recognizing or verifying the personnel of a particular facility. The
generality of the face model can be an important requirement for certain applications, but
this issue remains orthogonal to our contributions.

Hallucination with a Mismatching Model

What would we hallucinate if our face model did not match the test subject? To answer
this question, we fit the multiperson AAM of Section 3.4 to low-resolution images of a
subject outside the training set. Fig. 6.3 depicts two “ground truth” test frames that are
downsampled progressively from left to right, followed by hallucinations generated by the
traditional (AAMR-SIM) and the proposed (RAF) fitting algorithms. Observe that, even at
higher resolutions, the mismatching model is unable to reconstruct the appearance of the
underlying face. Nevertheless, there are similarities between the hallucinated and ground
truth expressions. As the input data becomes lower in resolution, the proposed fitting al-
gorithm (RAF) is able to extract the facial pose, teeth and eyes better than the traditional
one (AAMR-SIM). Even though Face Hallucination suffers overall from the mismatching
model, there are observable benefits in using an accurate model-fitting algorithm.
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ground truth 1/2 1/4 1/8 1/12 1/16

RAF

AAMR-SIM

RAF

AAMR-SIM

Figure 6.3: What would we hallucinate if our face model did not match the test subject? We
fit the multiperson AAM of Section 3.4 to low-resolution observations of a subject outside
the training set. Even in high-resolution, the mismatching model is unable to reconstruct the
underlying face. Nevertheless, there are similarities between the hallucinated and ground
truth expressions. As the input data becomes lower in resolution, the proposed fitting al-
gorithm (RAF) is able to extract the facial pose, teeth and eyes better than the traditional
one (AAMR-SIM). Even though Face Hallucination suffers overall from the mismatching
model, there are observable benefits in using an accurate model-fitting algorithm.
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6.3.2 Ambiguity Analysis: What’s the Limit?

Face Hallucination is a learning-based approach to super-resolution. It starts by extract-
ing the object/scene features that have survived the destructive effects of camera blur &
quantization, and it uses this information to constrain the space of high-resolution solu-
tions. Since blur destroys information, lower resolution observations become increasingly
ambiguous. If an image is blurred to the point of leaving no discriminative information in
it, one cannot infer the underlying state of the world and reconstruct it.

Analyzing when the resolution-induced ambiguities arise in images and how fast they
grow would reveal the limits of learning-based super-resolution algorithms. With an un-
derstanding of these limitations, one might be able to improve upon both models and algo-
rithms. For instance, if one could first gauge the difficulty of a given hallucination problem
and estimate the level of visual details that can be reliably recovered, one could choose a
face model of appropriate complexity.

6.3.3 Performance Metrics

An open problem in the domain of resolution enhancement is the lack of objective quality
metrics for a quantitative assessment of the results. The MSE measure is commonly used in
the literature, although it does not always reflect the perceived quality by humans [Girod,
1993]. For instance, an algorithm might be able to super-resolve and enhance a high-
contrast edge very well, except for a small error in its position. While the the MSE metric
would heavily penalize such reconstructions, the human eye may forgive the geometric
imperfection.

Quality metrics can also be tailored for particular applications of Face Hallucination.
For instance, one could define metrics based on semantic events such as eyeblinks and
mouth deformations. One could disregard a reconstructed eye’s appearance but focus on
how wide the eyelid is open. Alternatively, one could penalize for mismatches in the timing
and duration of eyeblinks. In some applications it may be sufficient for the hallucinated face
to show the correct facial expression such as sadness, surprise, and happiness.





Appendix A

Comparing the Forward and Backward
Algorithms
Assuming the idealized scenario of Section 3.2.2, let us express the image warp operations
of (3.15) using point coordinates
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We can rewrite the integration in (A.1) in the domain of I2 by defining z=W12(y). Since
dy=

∣∣J(W21)
∣∣dz, (A.1) can be written as
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Switching back to image warp notation, (A.2) becomes

Ŵ21=arg min
W21

∫
z∈domI2

[
warp

(
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]2∣∣J(W21)

∣∣dz.(A.3)

Recalling W12 = W−1
21 , we observe that the difference between the forward (3.13) and

backward (A.3) algorithms’ objective functions is the extra Jacobian term |J(W21)| in
(A.3). Since a general homography’s Jacobian varies spatially, this term would normally
act as a spatial weighting function and influence the minima of the objective function.
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Appendix B

Quantifying the Scaling-Induced Bias
The analysis in Section 3.2 shows that when the scene S is not known, any blur in the imag-
ing system will cause the forward and backward algorithms to be biased in the presence of
relative scaling. Quantifying the blur effect, however, is not trivial because it is ultimately
related to image content: while blurring (i.e., low-pass filtering) visually rich and detailed
images would produce a significant effect, it would barely alter already smooth images.
This motivated us to focus on a particular class of images, namely those of human faces.
Accurate registration algorithms are crucial in this domain, because it determines the per-
formance of various tracking, recognition and biometric verification systems. We ran our
face-domain experiments on a set of 140 grayscale, frontal face images from the FERET
database [Phillips et al., 2000].

To quantify the magnitude of the image registration bias, we generated a variety of syn-
thetic experiments wherein we simulated the image formation process. A real face image,
acting as S, was first blurred, then geometrically transformed according to specific warp
parameters, and finally resampled to generate images I1 and I2. In solving this synthetically
generated registration problem, only I1 and I2 were used (i.e., unknown scene case).

Given the ground truth warp parameters, we tested whether minimizing our objective
function gave accurate estimates of the warp. For simplicity, we limited our investigation to
similarity transforms with known scaling parameter (s). This left us with three degrees of
freedom, namely, translation (tx, ty) and rotation (θ), which we considered independently.
Having assigned s and θ their ground truth values, we exhaustively searched for the global
best values for translation. Similarly, the global minimum for rotation was sought, with s

and (tx, ty) set to their correct values. These searches were repeated in the neighborhood of
their free parameters’ ground truth values, and the magnitude of their biases was recorded.
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Figure B.1: Our quantitative results are organized in a matrix of registration problem in-
stances (left). Entries of this matrix show the bias statistics of the forward algorithm, with
blur compensation applied as needed.

B.1 Testing Conditions

Starting from a 384x256 pixel face image, five different scale reduction parameters (by
factors of 1, 2, 4, 8, and 16) were used in generating the test images I1 and I2. Without loss
of generality, rotation and translation parameters were set to zero. As shown in Fig. B.1
(left), this resulted in a 5x5 scenario matrix M of image pairs being registered for each
face image. Note that the diagonal elements of this matrix correspond to problem instances
where images have the same resolution, whereas off-diagonal elements represent cases
where they differ in this respect. Our tests aimed to measure how accurately the ground
truth translation and rotation values (i.e., no translation and rotation) could be estimated.

We limited our experiments to the forward algorithm, which always warps I1 onto I2,
regardless of their scale. However, since the full scenario matrix includes all possible pair-
ings, both downscaling and upscaling cases were covered, as exemplified by the instances
M(1, 4) and M(5, 3) in Fig. B.1. Bilinear interpolation was used whenever the source
image I1 of the warp was smaller than the destination image I2, and no deblurring was
attempted. In simulating the imaging process, we used a pillbox PSF whose width in scene
pixels equaled the integer downscale factor. Similarly, when I1 was being downscaled, the
extra blurring to be applied to T ′ in (3.24) was also obtained using a pillbox PSF whose
width in I1 pixels equaled the relative scale factor.

For practical reasons, our “global search” for the best parameter settings was limited
to the immediate neighborhood of corresponding ground truth values. For translation, we
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Figure B.2: L1 (left) and L2 (right) norm objective functions for translation parameters of
problem instance M(5, 3) of Fig. B.1. The forward algorithm is biased in this case, because
its global solution (•) does not coincide with the ground truth (?).

sampled the interval of [−0.20, +0.20] pixels in 0.01 pixel increments for both tx and ty.
Similarly, we sampled the [−2, +2] degree interval in 0.1 degree increments for rotation
(around the center of the image). Fig. B.2 shows example surfaces obtained by sampling
translation parameters of L1 and L2 norm objective functions for the problem M(5, 3) of
Fig. B.1, where I1 is lower in resolution than I2. As predicted, the global minima of these
functions do not lie at the origin, confirming a bias due to the problem formulation (i.e., the
objective function) itself, rather than the assumed noise or the minimization method.

B.2 Quantitative Results

The forward algorithm was investigated for all 25 entries of the scenario matrix, and re-
peated for 140 face images. Fig. B.3 reports means and standard deviations of the computed
bias magnitudes, organized in the same matrix form as the scenario matrix. Note that the
translation biases are originally measured in I2 pixel units, because tx and ty are added
onto I1 pixel coordinates after scaling. Fig. B.4 displays selected histograms of translation
biases.
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Translation Bias [pixel]
L1 Norm Obj. Func. L2 Norm Obj. Func.
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Figure B.3: The translation and rotation bias magnitude of the forward algorithm organized
in the 5x5 scenario matrix form. Rows and columns correspond to scaling factors applied
to I1 and I2, respectively. Entries are: Mean/Standard Deviation. The diagonal and upper
triangle of the matrices are expected, and empirically verified to be zero. For clarity, zero’s
are not shown in the table. Since the translation parameters are in I2 pixel units, so are their
reported biases. See Fig. B.5 for scale-normalized versions of translation biases.

B.3 Results

The forward algorithm was investigated for all 25 entries of the scenario matrix, and re-
peated for 140 face images. Fig. B.3 reports means and standard deviations of the computed
bias magnitudes, organized in the same matrix form as the scenario matrix. Note that the
translation biases are originally measured in I2 pixel units, because tx and ty are added
onto I1 pixel coordinates after scaling. Fig. B.4 displays selected histograms of translation
biases.

The lower triangle of the matrices corresponds to cases where I1 is lower in resolution
than I2, calling for bilinear interpolation of I1 during the warp. Confirming our analysis,
both translation and rotation parameters are found to be biased. For a given column (i.e.,
fixed I2 resolution), we observe that the bias in question gets larger as I1 is degraded in
resolution. This is due to the increased mismatch between T and T ′ as discussed in Section
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B.3 Results

The forward algorithm was investigated for all 25 entries of the scenario matrix, and re-
peated for 140 face images. Fig. B.3 reports means and standard deviations of the computed
bias magnitudes, organized in the same matrix form as the scenario matrix. Note that the
translation biases are originally measured in I2 pixel units, because tx and ty are added
onto I1 pixel coordinates after scaling. Fig. B.4 displays selected histograms of translation
biases.

The lower triangle of the matrices corresponds to cases where I1 is lower in resolution
than I2, calling for bilinear interpolation of I1 during the warp. Confirming our analysis,
both translation and rotation parameters are found to be biased. For a given column (i.e.,
fixed I2 resolution), we observe that the bias in question gets larger as I1 is degraded in
resolution. This is due to the increased mismatch between T and T ′ as discussed in Section
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Figure B.5: Scale-normalized translation bias values (c.f. Fig. B.3)
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The lower triangle of the matrices corresponds to cases where I1 is lower in resolution
than I2, calling for bilinear interpolation of I1 during the warp. Confirming our analy-
sis, both translation and rotation parameters are found to be biased. For a given column
(i.e., fixed I2 resolution), we observe that the bias in question gets larger as I1 is degraded
in resolution. This is due to the increased mismatch between T and T ′ as discussed in
Section 3.2.3, and the fact that the computed objective function increasingly relies on in-
terpolation.

The diagonal and upper triangle of the matrices represent cases where I1 is equal or
higher in resolution than I2. Following our analysis, we first compensate for the difference
between T and T ′ by blurring I1 as needed, and then proceed with the geometric warp. As
expected, the bias in these cases is empirically found to be zero. For clarity, these entries
are not shown.
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Figure B.4: Translation bias histograms for the L2 norm objective function, corresponding
to the last row (i.e., I1 scaled by 1/16) of the upper-right scenario matrix M in Fig. B.3.
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B.3 Scale-Normalized Translation Biases

As indicated in Section B.2, the translation bias results of Fig. B.3 are reported in I2’s
pixel units. However, since I2 has a different resolution in every column, the entries of the
matrix are not directly comparable. In Fig. B.5, we replicate these bias values in a common
(highest-resolution) scale.
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