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pose them with the shape model. We denote the combined geometric deformation by W(x;p),

where x is a model point coordinate being mapped onto an image coordinate.

The appearance model consists of the mean and basis images. The basis images are shape-

normalized, i.e., they are defined within the base shape s0. The appearance model is linear, and

parametrized with λ = (λ1, λ2, . . . , λm) as

A(x; λ) = A0(x) +
m∑

i=1

λiAi(x) ∀ x ∈ s0, (24)

where x is a pixel coordinate in s0. The appearance basis images are usually defined at reasonable

resolution levels such as 100x100 pixels for face models.

In this paper, we consider the simpler case of independent AAMs [32], where the statistical de-

pendence between the shape and appearance is ignored. While such couplings have been exploited

in prior work [13, 25], their advantages remain orthogonal to our discussion.

3.2 Traditional Fitting Formulation

Given a set of AAM parameters, the linear generative equations (23) and (24) can uniquely syn-

thesize an object instance [32]. Image analysis deals with the inverse of this process. It aims to

recover those AAM parameters which best explain a given image. For this end, one needs to define

a similarity metric to quantify what constitutes a good match, and a fitting algorithm for computing

the parameter values which optimize the similarity metric. The fitting criterion also specifies the

direction of warp, i.e., whether the template A(λ) ought to be warped onto the observed image, or

vice versa.

In the original AAM work by Cootes et al. [13, 14, 25], as well as its computationally efficient

reformulation by Matthews and Baker [32], the fitting criterion was the sum of squared intensity

differences between the synthesized model template and the warped input image I:

∑
x∈s0

[
I
(
W(x;p)

)
− A(x; λ)

]2
. (25)

Since this objective function is highly nonlinear in its parameters, iterative gradient-descent meth-

ods are usually used: In each iteration, updates ∆p and ∆λ are computed and added to (or com-
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Figure 4: Graphical representation of the traditional fitting criterion of (25). From left to right,

observed images get warped, interpolated, and finally compared against the synthesized model

instance. When the input image is low in resolution, significant interpolation is needed to warp it

onto the model coordinate frame.

where the summation is now over pixel coordinates u of the observed image I . That is, if (25)

was the forward algorithm of Section 2, (26) is the backward algorithm with an additional blur

operatorB. This blur simulates a low resolution image of the object, believed to be what the camera

would have captured under current AAM parameters. Although this formulation can accommodate

arbitrary camera models and point spread functions, in this paper, we use the rectangular PSF

B
(
u; A(W(p); λ)

)
=

1

area(u)

∫
u′

∈bin(u)

A
(
W

−1

(u′;p); λ
)
du′,

where the continuous integral is defined over bin(u), the sensing area of the discrete pixel u. As

illustrated in Fig. 5, the blur operator itself is independent of AAM parameters. It simply averages

out those template pixel intensities which map into a low resolution pixel’s sensing area under the

current warp p. To express the integral above in the shape-normalized coordinate frame s0, we

observe that u′ = W(x;p), and consequently, du′ =
∣∣J(

W(p)
)∣∣dx,
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posed with) current estimates of p and λ, respectively. Cootes et al. [13, 14, 25] assumed a

constant, linear relationship between the error image and the additive updates. They learned this

mapping through regression on perturbation-based training data. Matthews and Baker [32] showed

that in general there is no constant linear relationship between the error image and the update in the

additive case, but that there is in the (inverse) compositional case. Based on this insight, and using

the independence of the shape and appearance models in an independent AAM, they derived an

efficient AAM fitting algorithm that runs at over 200 frames per second on typically sized AAMs.

Note that the summation in (25) is defined over x, pixel coordinates in the shape-normalized

template image A(λ). Fig. 4 visualizes this procedure, where u denotes the pixel coordinates

of a low resolution input image I . Observe how the fitting criterion prescribes first warping and

interpolating the image I , and then comparing it against the synthesized template. The latter is nor-

malized to shape s0 at the AAM’s native resolution, and remains fixed in size. Consequently, when

objects appear small in comparison to the AAM, they need to be enlarged through interpolation.

Recalling our asymmetry analysis, we should expect the fitting results to be increasingly biased

with higher scaling factors, because the fitting criterion itself does not respect the asymmetry of

the problem at hand. Using the same gradient-descent algorithm and low resolution images, but

minimizing a more carefully designed fitting criterion, we can indeed improve the fitting accuracy.

3.3 Resolution-Aware Fitting (RAF)

3.3.1 Formulation

We propose an alternative to the fitting criterion (25). Recognizing the asymmetry of the problem,

we not only change the warp direction, but also introduce a model of the blur/image formation

process. From a generative point of view, this simulates the pixel-wise image formation process

in a CCD camera [1]. We feed the AAM and its current parameters into a camera model, and

compare the outcome against the observed low resolution image. Mathematically, the proposed

fitting criterion is ∑
u∈I

[
I(u) − B

(
u; A(W(p); λ)

)]2
, (26)
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Figure 5: The Resolution-Aware Fitting (RAF) algorithm simulates the formation of low resolution

images in a digital camera. In contrast to the traditional formulation (Fig. 4), the fitting criterion is

defined between observed and simulated image pixels.

B
(
u; A(W(p); λ)

)
=

1

area(u)

∫
x∈s0 s.t.

W(x;p) ∈ bin(u)

A(x; λ)
∣∣J(

W(p)
)∣∣dx.

In practice, we implement this integration as a discrete, Jacobian-weighted sum over template

pixels,

B
(
u; A(W(p); λ)

)
=

1

area(u)

∑
x∈s0 s.t.

u−

h
.5

.5

i
<W(x;p)<u+

h
.5

.5

i

A(x; λ)
∣∣J(

W(p)
)∣∣. (27)

Observe that our formulation avoids interpolating low resolution data, and models the object ap-

pearance, geometric deformation, and the image formation processes simultaneously.

3.3.2 RAF Algorithm

We now present a Gauss-Newton gradient-descent algorithm for the minimization of the fitting

criterion (26) with respect to p and λ. This algorithm gives up the computational efficiency of [32]
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Background

Traditional Formulation

Resolution-Aware Formulation

Problem

Active Appearance Models (AAM) are compact parametric representations of the shape and

appearance of objects [13, 25], and have been most popular in tracking human faces. Such models

are typically built at nominal image resolutions, where the landmarks describing the shape of a face

(such as eyebrows, lips) are localized and manually marked over a set of training images. Once

an AAM has been learned, it is fit to a new image for interpretation. A fitting algorithm recovers

those parameters which best explain a given image. This procedure is one of the image registration

problems covered in Section 2, except that an AAM has many more parameters to fit: the warp

is more complex, a piecewise affine warp defined by a collection of non-rigid shape modes. An

AAM also has a linear appearance model that has to be solved for.

In this section, we consider cases in which observed faces are lower resolution than the model,

and focus on AAM fitting accuracy metrics. We examine the traditional AAM fitting formulation

in the light of our bias analysis, and reveal how it overlooks the asymmetry issue. As predicted,

the fitting accuracy is shown to degrade quickly in lower resolutions. We then propose a new ML

algorithm which respects the asymmetry and incorporates a model of the camera blur, leading to

significantly more accurate fitting results.

3.1 Active Appearance Models

An AAM [13, 25] consists of two models, namely the shape and appearance of an object. Each of

these is a linear Principal Components model learned from training data. The shape of an AAM is

defined by a set of 2D landmark locations

s = (x1, y1, x2, y2, . . . , xv, yv)
T. (22)

The shape model, parametrized with p = (p1, p2, . . . , pn), expresses any shape as a linear combi-

nation of basis shapes added onto a base shape:

s(p) = s0 +
n∑

i=1

pisi. (23)

An AAM is defined in the coordinate system of the object being modeled. To express object in-

stances in arbitrary poses, a global transform is needed. Following [32], we define four special

shape bases to account for similarity transforms (scale, rotation, and two translations), and com-
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pose them with the shape model. We denote the combined geometric deformation by W(x;p),

where x is a model point coordinate being mapped onto an image coordinate.

The appearance model consists of the mean and basis images. The basis images are shape-

normalized, i.e., they are defined within the base shape s0. The appearance model is linear, and

parametrized with λ = (λ1, λ2, . . . , λm) as

A(x; λ) = A0(x) +
m∑

i=1

λiAi(x) ∀ x ∈ s0, (24)

where x is a pixel coordinate in s0. The appearance basis images are usually defined at reasonable

resolution levels such as 100x100 pixels for face models.

In this paper, we consider the simpler case of independent AAMs [32], where the statistical de-

pendence between the shape and appearance is ignored. While such couplings have been exploited

in prior work [13, 25], their advantages remain orthogonal to our discussion.

3.2 Traditional Fitting Formulation

Given a set of AAM parameters, the linear generative equations (23) and (24) can uniquely syn-

thesize an object instance [32]. Image analysis deals with the inverse of this process. It aims to

recover those AAM parameters which best explain a given image. For this end, one needs to define

a similarity metric to quantify what constitutes a good match, and a fitting algorithm for computing

the parameter values which optimize the similarity metric. The fitting criterion also specifies the

direction of warp, i.e., whether the template A(λ) ought to be warped onto the observed image, or

vice versa.

In the original AAM work by Cootes et al. [13, 14, 25], as well as its computationally efficient

reformulation by Matthews and Baker [32], the fitting criterion was the sum of squared intensity

differences between the synthesized model template and the warped input image I:
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Since this objective function is highly nonlinear in its parameters, iterative gradient-descent meth-

ods are usually used: In each iteration, updates ∆p and ∆λ are computed and added to (or com-
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observed images get warped, interpolated, and finally compared against the synthesized model

instance. When the input image is low in resolution, significant interpolation is needed to warp it

onto the model coordinate frame.

where the summation is now over pixel coordinates u of the observed image I . That is, if (25)

was the forward algorithm of Section 2, (26) is the backward algorithm with an additional blur

operatorB. This blur simulates a low resolution image of the object, believed to be what the camera

would have captured under current AAM parameters. Although this formulation can accommodate
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where the continuous integral is defined over bin(u), the sensing area of the discrete pixel u. As

illustrated in Fig. 5, the blur operator itself is independent of AAM parameters. It simply averages

out those template pixel intensities which map into a low resolution pixel’s sensing area under the

current warp p. To express the integral above in the shape-normalized coordinate frame s0, we

observe that u′ = W(x;p), and consequently, du′ =
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Figure 5: The Resolution-Aware Fitting (RAF) algorithm simulates the formation of low resolution

images in a digital camera. In contrast to the traditional formulation (Fig. 4), the fitting criterion is

defined between observed and simulated image pixels.

B
(
u; A(W(p); λ)

)
=

1

area(u)

∫
x∈s0 s.t.

W(x;p) ∈ bin(u)

A(x; λ)
∣∣J(

W(p)
)∣∣dx.

In practice, we implement this integration as a discrete, Jacobian-weighted sum over template

pixels,

B
(
u; A(W(p); λ)

)
=

1

area(u)

∑
x∈s0 s.t.

u−

h
.5
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i
<W(x;p)<u+

h
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i

A(x; λ)
∣∣J(

W(p)
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Observe that our formulation avoids interpolating low resolution data, and models the object ap-

pearance, geometric deformation, and the image formation processes simultaneously.

3.3.2 RAF Algorithm

We now present a Gauss-Newton gradient-descent algorithm for the minimization of the fitting

criterion (26) with respect to p and λ. This algorithm gives up the computational efficiency of [32]
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Active Appearance Models (AAM) are compact representations of the shape and appearance of objects. [Cootes et al, ‘98]. 
Fitting AAMs to images is a difficult, nonlinear optimization task. Traditional approaches can fit well to high-resolution 
images, but they degrade quickly at lower resolutions. We diagnose why this is the case, and propose a remedy.

From left to right, observed images get warped, interpolated, and 
finally compared against the synthesized model instance. When 
the input image is low in resolution, significant interpolation is 
needed to warp it onto the model coordinate frame.

The Resolution-Aware Fitting algorithm simulates the formation 
of low resolution images in a digital camera. In contrast to the 
traditional formulation, the fitting criterion is defined between 
observed and simulated image pixels.

from [Matthews and Baker, ‘04]

Fit the AAM by minimizing the L2 norm error between the model instance 
and the input image warped onto the model coordinate frame.

An AAM has two components: shape and appearance. Each 
is a linear, Principal Components model learned via training.

2

2 Background

2.1 Active Appearance Models

An AAM [5, 7] consists of two models, namely the shape and appearance of
an object. Each of these is a linear, Principal Components model learned from
training data. The shape of an AAM is defined by a set of landmark locations

s = (x1, y1, x2, y2, . . . , xv, yv)
T. (1)

The shape model, parametrized with p = (p1, p2, . . . , pn), expresses any shape
as a linear combination of basis shapes added onto a base shape:

s(p) = s0 +
n∑

i=1

pisi. (2)

An AAM is defined in the coordinate system of the object being modeled. To
express object instances in arbitrary poses, a global transform is needed. Follow-
ing [10], we define four special shape bases to account for similarity transforms
(scale, rotation, and two translations), and compose them with the shape model.
We denote the combined geometric deformation by W(x;p), where x is a model
point coordinate being mapped onto an image coordinate.

The appearance model consists of the mean and basis images. These im-
ages are shape-normalized, i.e., they are defined within the base shape s0. The
appearance model is linear, and parametrized with λ = (λ1, λ2, . . . , λm) as

A(x; λ) = A0(x) +
m∑

i=1

λiAi(x) ∀ x ∈ s0, (3)

where x is a pixel coordinate in s0. The appearance basis images are usually
defined at the same resolution as the training images.

In this paper, we consider the simpler case of independent AAMs [10], where
the statistical dependence between the shape and appearance is ignored. While
such couplings have been exploited in prior work, their advantages remain or-
thogonal to our discussion.

2.2 Traditional Fitting Formulation

Given a set of AAM parameters, the linear generative equations (2) and (3) can
uniquely synthesize an object instance. Image analysis deals with the inverse
of this process. It aims to recover those AAM parameters which best explain a
given image. For this end, one needs to define a similarity metric to quantify what
constitutes a good match, and a fitting algorithm for computing the parameter
values which optimize the similarity metric. The choice of this fitting criterion
is the main subject of this paper.

In the original AAM work by Cootes et al. [5–7], as well as its computation-
ally efficient reformulation by Matthews and Baker [10], the fitting criterion was
the sum of squared intensity differences between the synthesized model template
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Figure 3: An example of AAM instantiation. The shape parameters p = (p1, p2, . . . , pn)T are used to

compute the model shape s and the appearance parameters λ = (λ1,λ2, . . . ,λm)T are used to compute the
model appearance A. The model appearance is defined in the base mesh s0. The pair of meshes s0 and s

define a (piecewise affine) warp from s0 to s which we denote W(x;p). The final AAM model instance,

denoted M(W(x;p)), is computed by forwards warping the appearance A from s0 to s usingW(x;p).

parameters λ is then created by warping the appearance A from the base mesh s0 to the model

shape s. This process is illustrated in Figure 3 for concrete values of p and λ.

In particular, the pair of meshes s0 and s define a piecewise affine warp from s0 to s. For each

triangle in s0 there is a corresponding triangle in s. Any pair of triangles define a unique affine

warp from one to the other such that the vertices of the first triangle map to the vertices of the

second triangle. See Section 4.1.1 for more details. The complete warp is then computed: (1) for

any pixel x in s0 find out which triangle it lies in, and then (2) warp x with the affine warp for that

triangle. We denote this piecewise affine warp W(x;p). The final AAM model instance is then

computed by warping the appearance A from s0 to s with warp W(x;p). This process is defined

by the following equation:

M(W(x;p)) = A(x) (4)

where M is a 2D image of the appropriate size and shape that contains the model instance. This

equation, describes a forwards warping that should be interpreted as follows. Given a pixel x in
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geometric 
warp (p)

AAM Model Instance

The shape is defined by a set of landmarks. 
In addition to non-rigid shape modes, four 
special basis shapes account for similarity 
transforms.

The appearance component is shape-
normalized.

where

where
Fitting algorithms aim to recover those 
parameters which best explain a given image.

Objective function:

Gauss-Newton 
gradient descent:

(Estimated)

W(x; ∆p)

A0(x)

W(x;p)

I(x)

(Known)I(W(x;p))

W(x;p) ◦ W(x; ∆p)

(Update)

(Estimated)

W(x; ∆p)

A0(x)

W(x;p)

I(x)

I(W(x;p))

W(x;p) ◦ W(x; ∆p)−1

(Update)

(Known)

(a) Forwards Compositional (b) Inverse Compositional

Figure 6: (a) A schematic overview of the forwards-compositional image alignment algorithm. Given

current estimates of the parameters, the forwards compositional algorithm solves for an incremental warp

W(x;∆p) rather than a simple update to the parameters ∆p. The incremental warp is then composed with

the current estimate of the warp. (b) A schematic overview of the inverse-compositional image alignment al-

gorithm. The roles of I(W(x;p)) andA0(x) are reversed and the incremental warpW(x;∆p) is estimated
in the other (inverse) direction. The incremental warp therefore has to be inverted before it is composed with

the current estimate of the warp.

with respect to∆p and then updating the warp using:

W(x;p) ← W(x;p) ◦ W(x; ∆p)−1. (20)

Taking the Taylor series expansion of Equation (19) gives:

∑
x

[
I(W(x;p) − A0(W(x; 0)) −∇A0

∂W

∂p
∆p)

]2

. (21)

Assuming again thatW(x; 0) is the identity warp, the solution to this least squares problem is:

∆p = H−1
∑
x

[
∇A0

∂W

∂p

]T

[I(W(x;p)) − A0(x)] (22)

whereH is Hessian matrix with I replaced by A0:

H =
∑
x

[
∇A0

∂W

∂p

]T [
∇A0

∂W

∂p

]
. (23)

Since the template A0 is constant and the Jacobian
∂W
∂p
is always evaluated at p = 0, most of the

computation in Equations (22) and (23) can be moved to a precomputation step and performed
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Inverse-compositional 
warp update:

Compositional Algorithm [1] which minimizes Equation (3) by performing a Gauss-Newton
gradient descent optimization simultaneously on the warp parameters p and the appearance
parameters λ. The algorithm operates by iteratively minimizing:

∑
x

[
A0(W(x; ∆p)) +

m∑
i=1

(λi + ∆λi)Ai(W(x; ∆p))− I(W(x;p))

]2

(10)

simultaneously with respect to ∆p and ∆λ = (∆λ1, . . . , ∆λm)T, and then updating the warp
W(x;p) ←W(x;p) ◦W(x; ∆p)−1 and the appearance parameters λ ← λ + ∆λ.

To simplify the notation, denote:

q =

(
p
λ

)
and similarly ∆q =

(
∆p
∆λ

)
; (11)

i.e. q is an n+m dimensional column vector containing the warp parameters p concatenated
with the appearance parameters λ. Denote the n + m dimensional steepest-descent images
as follows:

SDsim(x) =
(

∇A
∂W
∂p1

, . . . ,∇A
∂W
∂pn

, A1(x), . . . , Am(x)
)

(12)

where ∇A is defined as

∇A = ∇A0 +
m∑

i=1

λi∇Ai. (13)

We can then compute the parameter update ∆q as

∆q = −H−1
sim

∑
x

SDT
sim(x)Eapp(x) (14)

where:
H−1

sim =
∑
x

SDT
sim(x)SDsim(x) (15)

and Eapp is defined as

Eapp(x) = I(W(x;p))−
[
A0(x) +

m∑
i=1

λiAi(x)

]
(16)

Since the steepest descent images SDsim depend on the appearance parameters λ through
Equation (13) they have to be re-computed in every iteration. The Simultaneous algorithm
is therefore fairly (but not exceedingly) inefficient. Our implementation runs at about 1
frame per second in Matlab. The Simultaneous algorithm is summarized in Figure 9.

The Simultaneous Inverse Compositional Algorithm is defined for independent AAMs
[10], which separately parameterize shape and appearance. It is different from the original
AAM fitting algorithm defined for combined AAMs which jointly parameterize shape and
appearance [4]. In the fitting algorithm in [4], the equivalent of the steepest descent images
are assumed to be constant. On the other hand, the steepest descent images in the Simulta-
neous Inverse Compositional Algorithm are updated in each iteration of the algorithm. As
the estimate of the appearance is updated, the way that the shape parameters are solved for

The “simultaneous inverse compositional” fitting algorithm [Gross et al., ‘05] 
iteratively solves for the shape and appearance updates.

We explicitly account for the finite size sensing elements of digital cameras, 
and simultaneously model the processes of object appearance variation, 
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Compositional Algorithm [1] which minimizes Equation (3) by performing a Gauss-Newton
gradient descent optimization simultaneously on the warp parameters p and the appearance
parameters λ. The algorithm operates by iteratively minimizing:

∑
x

[
A0(W(x; ∆p)) +

m∑
i=1

(λi + ∆λi)Ai(W(x; ∆p))− I(W(x;p))

]2

(10)

simultaneously with respect to ∆p and ∆λ = (∆λ1, . . . , ∆λm)T, and then updating the warp
W(x;p) ←W(x;p) ◦W(x; ∆p)−1 and the appearance parameters λ ← λ + ∆λ.

To simplify the notation, denote:

q =

(
p
λ

)
and similarly ∆q =

(
∆p
∆λ

)
; (11)

i.e. q is an n+m dimensional column vector containing the warp parameters p concatenated
with the appearance parameters λ. Denote the n + m dimensional steepest-descent images
as follows:

SDsim(x) =
(

∇A
∂W
∂p1

, . . . ,∇A
∂W
∂pn

, A1(x), . . . , Am(x)
)

(12)

where ∇A is defined as

∇A = ∇A0 +
m∑

i=1

λi∇Ai. (13)

We can then compute the parameter update ∆q as

∆q = −H−1
sim

∑
x

SDT
sim(x)Eapp(x) (14)

where:
H−1

sim =
∑
x

SDT
sim(x)SDsim(x) (15)

and Eapp is defined as

Eapp(x) = I(W(x;p))−
[
A0(x) +

m∑
i=1

λiAi(x)

]
(16)

Since the steepest descent images SDsim depend on the appearance parameters λ through
Equation (13) they have to be re-computed in every iteration. The Simultaneous algorithm
is therefore fairly (but not exceedingly) inefficient. Our implementation runs at about 1
frame per second in Matlab. The Simultaneous algorithm is summarized in Figure 9.

The Simultaneous Inverse Compositional Algorithm is defined for independent AAMs
[10], which separately parameterize shape and appearance. It is different from the original
AAM fitting algorithm defined for combined AAMs which jointly parameterize shape and
appearance [4]. In the fitting algorithm in [4], the equivalent of the steepest descent images
are assumed to be constant. On the other hand, the steepest descent images in the Simulta-
neous Inverse Compositional Algorithm are updated in each iteration of the algorithm. As
the estimate of the appearance is updated, the way that the shape parameters are solved for

3

I(u) I
`
W(u;p)

´
I

`
W(x;p)

´
A(x;λ)

Fig. 1. Graphical representation of the traditional fitting criterion of (4). From left
to right, observed images get warped, interpolated, and finally compared against the
synthesized model instance. When the input image is low in resolution, significant
interpolation is needed to warp it onto the model coordinate frame.

and the warped input image I:∑
x∈s0

[
I
(
W(x;p)

)
− A(x; λ)

]2
. (4)

Note that the summation above is defined over x, pixel coordinates in the shape-
normalized template image. Since this objective function is highly nonlinear in
its parameters, iterative gradient-descent methods were used to find its mini-
mum: At each iteration, updates ∆p and ∆λ were computed and added to (or
composed with) current estimates of p and λ, respectively. Cootes et al. [5–7]
assumed a constant, linear relationship between the error image and the additive
updates. They learned this mapping through regression on perturbation-based
training data. Matthews and Baker [10] explored linearizing the objective func-
tion just as in the Lucas-Kanade [2] registration algorithm, and achieved com-
putational savings by switching the roles of the template and input images [9]
in computing the warp update ∆p.

2.3 The Unsuspected Culprit in Low Resolution Problems

Any search method for optimizing the criterion (4) would suffer from a large
number of local minima. In some cases, the solution might even be ambiguous.
To make matters worse, these difficulties are only exacerbated when the available
data is noisy and low in resolution, such as in surveillance imagery.

Let u denote the pixel coordinates of a low resolution observation I. As visu-
alized in Fig. 1, the fitting criterion (4) prescribes first warping and interpolating
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the summation in (4) is defined over the pixels of the template. The latter is
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pose them with the shape model. We denote the combined geometric deformation by W(x;p),

where x is a model point coordinate being mapped onto an image coordinate.

The appearance model consists of the mean and basis images. The basis images are shape-

normalized, i.e., they are defined within the base shape s0. The appearance model is linear, and

parametrized with λ = (λ1, λ2, . . . , λm) as

A(x; λ) = A0(x) +
m∑

i=1

λiAi(x) ∀ x ∈ s0, (24)

where x is a pixel coordinate in s0. The appearance basis images are usually defined at reasonable

resolution levels such as 100x100 pixels for face models.

In this paper, we consider the simpler case of independent AAMs [32], where the statistical de-

pendence between the shape and appearance is ignored. While such couplings have been exploited

in prior work [13, 25], their advantages remain orthogonal to our discussion.

3.2 Traditional Fitting Formulation

Given a set of AAM parameters, the linear generative equations (23) and (24) can uniquely syn-

thesize an object instance [32]. Image analysis deals with the inverse of this process. It aims to

recover those AAM parameters which best explain a given image. For this end, one needs to define

a similarity metric to quantify what constitutes a good match, and a fitting algorithm for computing

the parameter values which optimize the similarity metric. The fitting criterion also specifies the

direction of warp, i.e., whether the template A(λ) ought to be warped onto the observed image, or

vice versa.

In the original AAM work by Cootes et al. [13, 14, 25], as well as its computationally efficient

reformulation by Matthews and Baker [32], the fitting criterion was the sum of squared intensity

differences between the synthesized model template and the warped input image I:

∑
x∈s0

[
I
(
W(x;p)

)
− A(x; λ)

]2
. (25)

Since this objective function is highly nonlinear in its parameters, iterative gradient-descent meth-

ods are usually used: In each iteration, updates ∆p and ∆λ are computed and added to (or com-
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vice versa.
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differences between the synthesized model template and the warped input image I:
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. (25)

Since this objective function is highly nonlinear in its parameters, iterative gradient-descent meth-

ods are usually used: In each iteration, updates ∆p and ∆λ are computed and added to (or com-
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Compositional Algorithm [1] which minimizes Equation (3) by performing a Gauss-Newton
gradient descent optimization simultaneously on the warp parameters p and the appearance
parameters λ. The algorithm operates by iteratively minimizing:

∑
x

[
A0(W(x; ∆p)) +

m∑
i=1

(λi + ∆λi)Ai(W(x; ∆p))− I(W(x;p))

]2

(10)

simultaneously with respect to ∆p and ∆λ = (∆λ1, . . . , ∆λm)T, and then updating the warp
W(x;p) ←W(x;p) ◦W(x; ∆p)−1 and the appearance parameters λ ← λ + ∆λ.

To simplify the notation, denote:

q =

(
p
λ

)
and similarly ∆q =

(
∆p
∆λ

)
; (11)

i.e. q is an n+m dimensional column vector containing the warp parameters p concatenated
with the appearance parameters λ. Denote the n + m dimensional steepest-descent images
as follows:

SDsim(x) =
(

∇A
∂W
∂p1

, . . . ,∇A
∂W
∂pn

, A1(x), . . . , Am(x)
)

(12)

where ∇A is defined as

∇A = ∇A0 +
m∑

i=1

λi∇Ai. (13)

We can then compute the parameter update ∆q as

∆q = −H−1
sim

∑
x

SDT
sim(x)Eapp(x) (14)

where:
H−1

sim =
∑
x

SDT
sim(x)SDsim(x) (15)

and Eapp is defined as

Eapp(x) = I(W(x;p))−
[
A0(x) +

m∑
i=1

λiAi(x)

]
(16)

Since the steepest descent images SDsim depend on the appearance parameters λ through
Equation (13) they have to be re-computed in every iteration. The Simultaneous algorithm
is therefore fairly (but not exceedingly) inefficient. Our implementation runs at about 1
frame per second in Matlab. The Simultaneous algorithm is summarized in Figure 9.

The Simultaneous Inverse Compositional Algorithm is defined for independent AAMs
[10], which separately parameterize shape and appearance. It is different from the original
AAM fitting algorithm defined for combined AAMs which jointly parameterize shape and
appearance [4]. In the fitting algorithm in [4], the equivalent of the steepest descent images
are assumed to be constant. On the other hand, the steepest descent images in the Simulta-
neous Inverse Compositional Algorithm are updated in each iteration of the algorithm. As
the estimate of the appearance is updated, the way that the shape parameters are solved for

The blur model can incorporate arbitrary cameras and point spread 
functions (PSF). We use the rectangular PSF:

Gauss-Newton gradient descent:

Discrete implementation:

Computational Comparison
• AAMR-SIM can pre-compute steepest-descent images and 
Hessians, leading to very efficient tracker implementations.

• RAF gives up the computational efficiency of AAMR-SIM in 
exchange for a more accurate/unbiased estimate of the 
parameters. Gradient-descent parameters need to be 
recomputed at every iteration.

RAF

AAMR-SIM
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Experimental setup

• Synthetically downsample input images at various scales.
• Initialize at t0 with the high-resolution “ground truth” fit. 
• Video sequence tracked frame-to-frame.
• Compare fitting results against “ground truth” fits.

videos: http://www.cs.cmu.edu/~dedeoglu/eccv06

• AAM Toolbox: I. Matthews
• Discussions & comments: J. August, CMU misc-reading group, Y. Caspi
• Data collection: P. Bogdan, H. Yalçın, R. Patil, and S. Rossbach
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Algorithms and Accuracy Metrics

• AAMR-SIM: Traditional formulation. 
• RAF: Resolution-Aware formulation with pill-box camera PSF.
• Both algorithms perform Gauss-Newton gradient-descent to 
estimate the shape and appearance parameters simultaneously.

Example parameter 
trajectories at scaling 
factor 1/10. Colors: 
Ground Truth      
RAF    AAMR-SIM
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Figure 8: Selected temporal trajectories are shown for a 10-fold resolution degraded face tracking

experiment. As the supplemental video material shows, the main source of motion were the sub-

ject’s speaking and eye blinking. See Fig. 7 for one example frame of this sequence. The estimates

of AAMR-SIM do not follow the ground truth, and remain mostly constant. In contrast, RAF

remains close to ground truth in all trajectories, indicating that it is able to extract the underlying

facial expressions correctly.

The multi-person appearance model has almost twice the number of appearance modes compared

to the single-person case, indicating a richer sub-space being modeled. Again, RAF is consistently

superior to AAMR-SIM in accuracy with regard to both tracking and reconstruction.
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Once the AAM is fit to a low-resolution face image, we can use its estimated parameters to syn-

thesize a high-resolution reconstruction of the face. This provides a qualitative evaluation of the

results. We overlay such reconstructions on pixel-replicated original low-resolution inputs at where
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We observe substantial accuracy improvements across all metrics and variables.
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Figure 9: Quantitative comparison between the AAMR-SIM and RAF algorithms for fitting

the single-person AAM to a 180 frame-long sequence. Both algorithms perform well at half-

resolution, validating the derivation and implementation of RAF. The latter brings substantial

improvements across all metrics for downscaling factors 4 and higher. The principal modes are

displayed in order of % energy (i.e., variation) they capture.

does not. Fig. 12 offers a visual alternative for assessing how the trackers degrade with increased

downscaling: it displays the single-person AAM results for frame no. 102 across various scales.

While RAF can consistently recover the open eyes and mouth, AAMR-SIM’s estimates degrade

quickly: starting from downsampling factor 6, the eyes and mouth are first estimated to be half-

open, and then totally closed. Similarly, Fig. 13 displays snapshots of different test subjects, all

tracked using the multi-person AAM of Fig. 10. In both single- and multi-person AAMs, we find

the visual reconstruction quality of RAF to be consistently superior to that of AAMR-SIM.

3.6 Qualitative Results on Real Low Resolution Data

We also compared the two AAM fitting algorithms on real low resolution videos. Using a Sony

DCR-VX2000 camera (15 fps in progressive mode and DV-format compression), we video-taped

24

2 4 6 8 10 12
0

10

20

reconstruction

[i
n

te
n

s
it
y
 l
e

v
e

l]

2 4 6 8 10 12
0

2

4

landmark tracking

[p
ix

e
l]

2 4 6 8 10 12
0

1

2

shape mode 1 (47%)

[s
ig

m
a

]

2 4 6 8 10 12
0

1

2

3

shape mode 2 (26%)

[s
ig

m
a

]

2 4 6 8 10 12
0

1

shape mode 3 (15%)

[s
ig

m
a

]

2 4 6 8 10 12
0

1

2

3

shape mode 4 (6%)

[s
ig

m
a

]

2 4 6 8 10 12
0

0.5

1

appear. mode 1 (23%)

[s
ig

m
a

]

2 4 6 8 10 12
0

0.5

1

appear. mode 2 (19%)

[s
ig

m
a

]

2 4 6 8 10 12
0

0.5

1

appear. mode 3 (12%)

[s
ig

m
a

]

2 4 6 8 10 12
0

0.5

1

appear. mode 4 (11%)

[s
ig

m
a

]

AAM Info

type: single person

training set: 31 images

test set: 180 images

shape modes: 11

appearance modes: 23

face size: 100x104

Axis Labels

X ! zoom factor

Y ! RMS error

0 0.5 1 1.5

0.8

1

1.2

1.4

1.6

 

 

AAMR!SIM

RAF (this paper)

Figure 9: Quantitative comparison between the AAMR-SIM and RAF algorithms for fitting

the single-person AAM to a 180 frame-long sequence. Both algorithms perform well at half-

resolution, validating the derivation and implementation of RAF. The latter brings substantial

improvements across all metrics for downscaling factors 4 and higher. The principal modes are

displayed in order of % energy (i.e., variation) they capture.

does not. Fig. 12 offers a visual alternative for assessing how the trackers degrade with increased

downscaling: it displays the single-person AAM results for frame no. 102 across various scales.

While RAF can consistently recover the open eyes and mouth, AAMR-SIM’s estimates degrade

quickly: starting from downsampling factor 6, the eyes and mouth are first estimated to be half-

open, and then totally closed. Similarly, Fig. 13 displays snapshots of different test subjects, all

tracked using the multi-person AAM of Fig. 10. In both single- and multi-person AAMs, we find

the visual reconstruction quality of RAF to be consistently superior to that of AAMR-SIM.

3.6 Qualitative Results on Real Low Resolution Data

We also compared the two AAM fitting algorithms on real low resolution videos. Using a Sony

DCR-VX2000 camera (15 fps in progressive mode and DV-format compression), we video-taped
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Figure 10: Quantitative comparison between the AAMR-SIM and RAF algorithms for fitting the

multi-person (5 subjects) AAM. Each reported mean and standard deviation is calculated over 900

frames, comprising 180 frames for each of 5 subjects. RAF improves the tracking, reconstruction,

non-rigid shape, and appearance estimates considerably.

a particular subject’s face at various distances, yielding face heights between 20 and 120 pixels in

images. At each camera distance, the subject uttered the sequence “left-right-up-down-smile” and

moved her face accordingly. We built a face AAM using 43 of high resolution frames, and verified

its tracking and reconstruction performance in that resolution. The AAM was 110x114x3 pixels,

with 12 non-rigid shape and 43 appearance modes. We fit this AAM to videos using the AAMR-

SIM and RAF algorithms. Initialization was done manually, by scaling and positioning the AAM.

Fig. 14 compares face reconstructions for an eye-blink subsequence. The observed face is

33 pixels high, corresponding to a downscaling factor of about 3. Note the sharpness of RAF

reconstructions. In contrast, AAMR-SIM misses the eye-blink, and reconstructs blurrier faces.

On all video sequences with downscaling factors 3.5 and higher (where the face height ranged

from 30 to 20 pixels), AAMR-SIM consistently lost track of the face. In contrast, RAF kept

tracking and reconstructing the face reasonably well. In Fig. 15, we include selected frames of
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Figure 10: Quantitative comparison between the AAMR-SIM and RAF algorithms for fitting the

multi-person (5 subjects) AAM. Each reported mean and standard deviation is calculated over 900

frames, comprising 180 frames for each of 5 subjects. RAF improves the tracking, reconstruction,

non-rigid shape, and appearance estimates considerably.

a particular subject’s face at various distances, yielding face heights between 20 and 120 pixels in

images. At each camera distance, the subject uttered the sequence “left-right-up-down-smile” and

moved her face accordingly. We built a face AAM using 43 of high resolution frames, and verified

its tracking and reconstruction performance in that resolution. The AAM was 110x114x3 pixels,

with 12 non-rigid shape and 43 appearance modes. We fit this AAM to videos using the AAMR-

SIM and RAF algorithms. Initialization was done manually, by scaling and positioning the AAM.

Fig. 14 compares face reconstructions for an eye-blink subsequence. The observed face is

33 pixels high, corresponding to a downscaling factor of about 3. Note the sharpness of RAF

reconstructions. In contrast, AAMR-SIM misses the eye-blink, and reconstructs blurrier faces.

On all video sequences with downscaling factors 3.5 and higher (where the face height ranged

from 30 to 20 pixels), AAMR-SIM consistently lost track of the face. In contrast, RAF kept

tracking and reconstructing the face reasonably well. In Fig. 15, we include selected frames of
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Figure 10: Quantitative comparison between the AAMR-SIM and RAF algorithms for fitting the

multi-person (5 subjects) AAM. Each reported mean and standard deviation is calculated over 900

frames, comprising 180 frames for each of 5 subjects. RAF improves the tracking, reconstruction,

non-rigid shape, and appearance estimates considerably.

a particular subject’s face at various distances, yielding face heights between 20 and 120 pixels in

images. At each camera distance, the subject uttered the sequence “left-right-up-down-smile” and

moved her face accordingly. We built a face AAM using 43 of high resolution frames, and verified

its tracking and reconstruction performance in that resolution. The AAM was 110x114x3 pixels,

with 12 non-rigid shape and 43 appearance modes. We fit this AAM to videos using the AAMR-

SIM and RAF algorithms. Initialization was done manually, by scaling and positioning the AAM.

Fig. 14 compares face reconstructions for an eye-blink subsequence. The observed face is

33 pixels high, corresponding to a downscaling factor of about 3. Note the sharpness of RAF

reconstructions. In contrast, AAMR-SIM misses the eye-blink, and reconstructs blurrier faces.

On all video sequences with downscaling factors 3.5 and higher (where the face height ranged

from 30 to 20 pixels), AAMR-SIM consistently lost track of the face. In contrast, RAF kept

tracking and reconstructing the face reasonably well. In Fig. 15, we include selected frames of
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AAMR-SIM
RAF

Example fits using synthetic low-resolution data.

Resolution-Aware Fitting results remain visually detailed and realistic despite input resolution degradation.

Example fits using DV-compressed real low-resolution data

• Single-person AAM built at 110x114 pixel resolution.
• Shown below: eye-blink sequence, scaling ~1/3.
• RAF correctly recovers the eye-blink, whereas AAMR-SIM does not.

Figure 14: The top row shows DV-compressed video frames. The face is about 33 pixels high

(downscaling factor ∼3). AAMR-SIM (bottom row) misses the eye-blink, and reconstructs overly

smooth faces. Indeed, AAMR-SIM fails to track faces any smaller than this size. In contrast, RAF

(middle row) infers and reconstructs the underlying facial expression with crisp details.

the Taylor expansion for the warp parameters over the model (i.e., AAM appearance basis), and

pre-compute all associated Jacobians and Hessians. Unfortunately, the RAF formulation of Section

3.3 does not benefit from such pre-computations. One area for future work is to investigate how

such savings may be possible.

4.3 Heuristics and Regularization

We only fit nominal-resolutionAAMs, independently of howmuch lower in resolution the observa-

tions were. This allowed us to reconstruct faces in high-resolution. A related idea is to construct a

scale-space pyramid of AAMs, and to model multiple resolutions at once. Due to blur, higher-level

(i.e., lower-resolution) AAMs would have more compact appearance models, and would therefore

be easier to fit. Though this may seem to be an alternative to our approach, comparison across mod-

els is outside the scopre of this paper. In comparing between fitting formulations across a range of

resolution degradations, we used exactly the same resolution AAM. Our goal was to make a given

fitting problem more accurate, rather than finding an easier fitting problem.
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Figure 13: Selected test frames are shown to visually compare the algorithms for fitting the multi-

person AAM. The quantitative improvement in appearance estimates (Fig. 10) has visible effects.

Mesh displays are omitted due to a lack of significant difference.
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Figure 13: Selected test frames are shown to visually compare the algorithms for fitting the multi-

person AAM. The quantitative improvement in appearance estimates (Fig. 10) has visible effects.

Mesh displays are omitted due to a lack of significant difference.
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RAF

AAMR-SIM

• In low-resolution regimes, traditional AAM fitting algorithms suffer 
from an artifact of formulation. Since they rely on interpolation, their 
accuracy degrades quickly. The proposed Resolution-Aware Formulation 
avoids interpolation, and uses a camera (blur) model instead. This leads 
to significant accuracy improvements.

• In [Dedeoglu et al., ‘06], we argue that image-based warp estimation is 
an asymmetric problem. In the presence of relative scaling, the warp 
direction ought to be chosen such that the higher-resolution image gets 
pre-blurred and warped onto the lower-resolution one. As such, the 
Resolution-Aware Fitting algorithm is an application of this principle.
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