Resolution-Aware Fitting of
Active Appearance Models to
Low-Resolution Images

Problem Active Appearance Models (AAM) are compact representations of the shape and appearance of objects. [Cootes et al,"98].
Fitting AAMs to images is a difficult, nonlinear optimization task. Traditional approaches can fit well to high-resolution
images, but they degrade quickly at lower resolutions.VVe diaghose why this is the case, and propose a remedy.
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Fitting algorithms aim to recover those
parameters which best explain a given image. from [Matthews and Baker, ‘04]

Traditional Formulation

Fit the AAM by minimizing the L2 norm error between the model instance NN DA
o . . {
and the input image warped onto the model coordinate frame. 2
Al A | A 4 1 |
, | i
Objective function: > {](W(x; p)) — A(x; A)} plala A
4
X &S £
observed LR geometric warped LR inter- interpolated HR fitting synthesized HR

The “simultaneous inverse compositional” fitting algorithm [Gross et al.,‘05] mage [ warp(p) = observation [powation & observation “criterion.  template (A

iteratively solves for the shape and appearance updates.
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From left to right, observed images get warped, interpolated, and
finally compared against the synthesized model instance.VWhen
the input image is low in resolution, significant interpolation is
needed to warp it onto the model coordinate frame.
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Resolution-Aware Formulation

We explicitly account for the finite size sensing elements of digital cameras, NN 1T
and simultaneously model the processes of object appearance variation, —
geometric deformation, and image formation. o el o N
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The blur model can incorporate arbitrary cameras and point spread

functions (PSF).We use the rectangular PSF: - ;:.- |
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Gauss-Newton gradient descent: Computational Comparison
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* RAF gives up the computational efficiency of in
exchange for a more accurate/unbiased estimate of the
parameters. Gradient-descent parameters need to be

H, = Z B(u;SDY,) B(u;SDy,,) recomputed at every iteration.
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Quantitative Results

Algorithms and Accuracy Metrics

e AAMR-5IM: Traditional formulation.

* RAF: Resolution-Aware formulation with pill-box camera PSF.
* Both algorithms perform Gauss-Newton gradient-descent to
estimate the shape and appearance parameters simultaneously.

Experimental setup

* Synthetically downsample input images at various scales.
* |nitialize at to with the high-resolution “ground truth” fit.
* Video sequence tracked frame-to-frame.

 Compare fitting results against “ground truth” fits.
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Ve observe substantial accuracy improvements across all metrics and variables.

Qualitative Results

videos: http://www.cs.cmu.edu/~dedeoglu/eccv06

Example fits using synthetic low-resolution data.
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Example fits using DV-compressed real low-resolution data

* Single-person AAM built at | 10x1 |4 pixel resolution.
* Shown below: eye-blink sequence, scaling ~1/3.
* RAF correctly recovers the eye-blink, whereas AAMR-5I" does not.
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Resolution-Aware Fitting results remain visually detailed and realistic despite input resolution degradation.

Conclusion

* In low-resolution regimes, traditional AAM fitting algorithms suffer
from an artifact of formulation. Since they rely on interpolation, their
accuracy degrades quickly. The proposed Resolution-Aware Formulation
avoids interpolation, and uses a camera (blur) model instead. This leads
to significant accuracy improvements.

® |[n [Dedeoglu et al.,"06], we argue that image-based warp estimation is
an asymmetric problem. In the presence of relative scaling, the warp
direction ought to be chosen such that the higher-resolution image gets
pre-blurred and warped onto the lower-resolution one.As such, the
Resolution-Aware Fitting algorithm is an application of this principle.
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