Landmark-based Matching Algorithm for Cooperative Mapping by Autonomous Robots

Goksel Dedeoglu
Gaurav S. Sukhatme

Robotic Embedded Systems Laboratory Robotics Research Laboratories University of Southern California

> gaurav@usc.edu robotics.usc.edu/~gaurav

Motivation

Mobile robots need to get a lot better at living in human environments

- keep good track of where they are (localize)
- develop a representation of their surroundings (mapping)
- move purposefully and safely

Constraints and Goals

- Environments of interest are usually
 - Dynamic
 - Noisy
 - ... and might be semi-structured
- We want
 - Online processing
 - Robust, fault-tolerant behavior

Our Approach: Topological Mapping

- Exploit presence of (known) features in the environment
- A map is a connected set of features

- Claims
 - Lightweight
 - Scalable
 - Distributed across multiple robots

Domain: Mapping the Interior of a Building

- Several robots (not localized in each others' coordinate systems) explore one floor of a building
- Each robot builds a topological map with rough metric support
- Maps are based on landmarks, which are detected using sonar range data, laser ranging and visual color cues
- Improved accuracy supported by reliable localization

Multi-robot Mapping

Mapping Algorithm: Outline

- Individual robots detect features
- Individual robots create topological maps with rough metric support
 - Each map is a planar graph
- Match algorithm finds best match topology using heuristic pruning

Behavior-based Navigation

Position Tracking

Correcting Odometry

Landmark Detection and Mapping

Map Representation

- A map is an augmented planar graph
 - Nodes are landmarks
 - Links are metric connections

```
struct link{
struct node{
                                    connected_to_id
 id
 type // corner, junction, door
                                                  // open space, blocked
                                    type
 x, y // approx coordinates
                                                  // door
                                                  // in local frame
 struct link[4] // 4 possible
                                    heading
               // directions
                                    compass
                                    distance
 visit_counter
 detection_counter
                                    travel_counter
```

Experimental Example

Experimental Example: Individual Maps

Experimental Results: Combining Maps

- Consider two maps with *n* and *m* nodes respectively
 - Pair landmarks of same type attribute (e.g. corners with corners)
 - Consider only landmarks that describe spatial features (e.g. corners and junctions)

Reduces the number of candidate transformations to approx. 20% of *nm*

Scaling: Number of Candidate Transforms

Final Map Matching

- Check for mismatch in absolute heading value
- Compute translation and rotation transformation for each remaining pair of candidate matches

The transformation that yields the highest number of overlapping landmarks is the best match

Results of Match Algorithm

Map Overlay on Floorplan

Conclusions

- A lightweight, distributed approach to mapping based on topology matching
- Experimental evidence suggests that the approach <u>scales</u> well to many robots
- Does <u>not</u> require co-localized initial conditions or even a shared coordinate system
- Well suited to <u>heterogeneous</u> robot teams

Future Work

- Augment topological nodes with multicriteria confidence levels
- Simultaneous tracking and mapping
- Improved user-interface for recalling and re-displaying images registered to map

http://robotics.usc.edu/~embedded

- Tools:
 - ARENA multirobot simulator
 - I http://robot.usc.edu/arena
 - Golem robot server
 - I http://fnord.usc.edu/golem

Work supported by NSF and DARPA (TMR and MARS programs)